Bayesian estimation and model selection of a multivariate smooth transition autoregressive model
Citation
Source Title
DOI
ISSN
Faculty
School
Collection
Abstract
The multivariate smooth transition autoregressive model with order k (M-STAR)(k) is a nonlinear multivariate time series model able to capture regime changes in the conditional mean. The main aim of this paper is to develop a Bayesian estimation scheme for the M-STAR(k) model that includes the coefficient parameter matrix, transition function parameters, covariance parameter matrix, and the model order k as parameters to estimate. To achieve this aim, the joint posterior distribution of the parameters for the M-STAR(k) model is derived. The conditional posterior distributions are then shown, followed by the design of a posterior simulator using a combination of Markov chain Monte Carlo (MCMC) algorithms that includes the Metropolis-Hastings, Gibbs sampler, and reversible jump MCMC algorithms. Following this, extensive simulation studies, as well as case studies, are detailed at the end.
Related items
Showing items related by title, author, creator and subject.
-
Li, Ruiping (2002)In most cases of seismic processing and interpretation, elastic isotropy is assumed. However, velocity anisotropy is found to exist in most subsurface media. Hence, there exists a fundamental inconsistency between theory ...
-
Amiri, Amirpiran (2013)The alumina industry provides the feedstock for aluminium metal production and contributes to around A$6 billion of Australian exports annually. One of the most energy-intensive parts of alumina production, with a strong ...
-
Brearley, Darren (2003)Continued expansion of the gold and nickel mining industry in Western Australia during recent years has led to disturbance of larger areas and the generation of increasing volumes of waste rock. Mine operators are obligated ...