New innovations in ionic liquid–based miniaturised amperometric gas sensors
Citation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
© 2019 Elsevier B.V.
Gas detection is an essential part of everyday life; for some applications, using sensors for toxic and hazardous gases can literally mean the difference between life and death. In this minireview, recent progress in amperometric gas sensing using miniaturised electrodes and devices is described. The focus is on the use of nonvolatile room-temperature ionic liquids (RTILs) as electrolytes, which possess inherent advantages such as wide electrochemical windows, high thermal and chemical stability, intrinsic conductivity and good solvating properties. Various different gases, electrodes and RTILs have been investigated in the strive towards new materials for improved gas sensors. The most recent developments using porous membrane electrodes, planar devices (e.g. screen-printed, thin-film, microarray and interdigitated electrodes) and the modification of these surfaces for improved sensitivity are described. RTILs have great potential to be used as electrolytes in amperometric gas sensors, with improved lifespan of the sensor in hot/dry environments and allowing miniaturisation of devices. However, it is clear that more understanding of their long-term operation and utility in real environments (e.g. background air, varying temperatures and humidity levels) is needed before their realisation in successful commercial devices.
Related items
Showing items related by title, author, creator and subject.
-
Lee, Juni ; Hussain, Ghulam; López-Salas, N.; Macfarlane, D.R.; Silvester-Dean, Debbie (2020)© The Royal Society of Chemistry 2020. Gas sensors are important devices used to monitor the type and amount of gas present. Amperometric gas sensors-based on measuring the current upon an applied potential-have been ...
-
Doblinger, Simon; Hay, Catherine E.; Tomé, L.C.; Mecerreyes, D.; Silvester-Dean, Debbie (2022)Ionic liquids (ILs) are highly promising, tuneable materials that have the potential to replace volatile electrolytes in amperometric gas sensors in a ‘membrane-free’ sensor design. However, the drawback of removing the ...
-
Hussain, Ghulam; Ge, M.; Zhao, C.; Silvester-Dean, Debbie (2019)© 2019 Elsevier B.V. From a safety perspective, it is vital to have fast responding gas sensors for toxic and explosive gases in the event of a gas leak. Amperometric gas sensors have been developed for such a purpose, ...