A rapidly changing jet orientation in the stellar-mass black-hole system V404 Cygni
Access Status
Authors
Date
2019Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
© 2019, The Author(s), under exclusive licence to Springer Nature Limited. Powerful relativistic jets are one of the main ways in which accreting black holes provide kinetic feedback to their surroundings. Jets launched from or redirected by the accretion flow that powers them are expected to be affected by the dynamics of the flow, which for accreting stellar-mass black holes has shown evidence for precession1 due to frame-dragging effects that occur when the black-hole spin axis is misaligned with the orbital plane of its companion star2. Recently, theoretical simulations have suggested that the jets can exert an additional torque on the accretion flow3, although the interplay between the dynamics of the accretion flow and the launching of the jets is not yet understood. Here we report a rapidly changing jet orientation—on a time scale of minutes to hours—in the black-hole X-ray binary V404 Cygni, detected with very-long-baseline interferometry during the peak of its 2015 outburst. We show that this changing jet orientation can be modelled as the Lense–Thirring precession of a vertically extended slim disk that arises from the super-Eddington accretion rate4. Our findings suggest that the dynamics of the precessing inner accretion disk could play a role in either directly launching or redirecting the jets within the inner few hundred gravitational radii. Similar dynamics should be expected in any strongly accreting black hole whose spin is misaligned with the inflowing gas, both affecting the observational characteristics of the jets and distributing the black-hole feedback more uniformly over the surrounding environment5,6.
Related items
Showing items related by title, author, creator and subject.
-
Wevers, T.; Pasham, D.R.; Van Velzen, S.; Miller-Jones, James ; Uttley, P.; Gendreau, K.C.; Remillard, R.; Arzoumanian, Z.; Löwenstein, M.; Chiti, A. (2021)Following a tidal disruption event (TDE), the accretion rate can evolve from quiescent to near-Eddington levels and back over timescales of months to years. This provides a unique opportunity to study the formation and ...
-
Gallo, E.; Fender, R.; Miller-Jones, James; Merloni, A.; Jonker, P.; Heinz, S.; Maccarone, T.; van der Klis, M. (2006)Deep observations with the Very Large Array of A0620–00, performed in 2005 August, resulted in the first detection of radio emission from a black hole binary at X-ray luminosities as low as 10-8.5 times the Eddington ...
-
Tremou, E.; Corbel, S.; Fender, R.P.; Woudt, P.A.; Miller-Jones, James ; Motta, S.E.; Heywood, I.; Armstrong, R.P.; Groot, P.; Horesh, A.; Van Der Horst, A.J.; Koerding, E.; Mooley, K.P.; Rowlinson, A.; Wijers, R.A.M.J. (2020)© 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. The radio-X-ray correlation that characterizes accreting black holes at all mass scales - from stellar mass black holes ...