Diagnostics based Principal Component Analysis for Robust Plane Fitting in Laser Data
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISBN
Collection
Abstract
Plane fitting and obtaining characteristics (e.g., normal) from the estimated plane are fundamental tasks in many applications in which laser scanner 3D data is used. Unfortunately, laser data are not free from outliers. Principal Component Analysis (PCA) is a popular method for plane fitting, but it is known that PCA is very sensitive to outliers and gives misleading non-robust results. We present a robust plane fitting algorithm based on PCA coupled with an outlier detecting diagnostic statistical approach. In this method, the recently introduced robust scatter matrix is used to calculate robust statistical distance for finding outliers. After excluding outliers, PCA is performed on the outlier free data which is used for fitting planar surfaces and to estimate robust normal and other parameters. Demonstration of the new algorithm through several synthetic and vehicle based laser scanning data show that the proposed method is efficient, and gives robust estimates. Results outperform Least Squares (LS), PCA and are significantly better than the well-known RANSAC in terms of time, accuracy and robustness. This method has great potential for robust segmentation, surface reconstruction, and other point cloud processing tasks.
Related items
Showing items related by title, author, creator and subject.
-
Nurunnabi, Abdul; Belton, David; West, Geoff (2012)Objectives: Surface reconstruction and fitting for geometric primitives and three Dimensional (3D) modeling is a fundamental task in the field of photogrammetry and reverse engineering. However it is impractical to get ...
-
Nurunnabi, A.; Belton, David; West, Geoff (2014)This paper proposes robust methods for local planar surface fitting in 3D laser scanning data. Searching through the literature revealed that many authors frequently used Least Squares (LS) and Principal Component Analysis ...
-
Nurunnabi, A.; West, Geoff; Belton, David (2015)This paper proposes two robust statistical techniques for outlier detection and robust saliency features, such as surface normal and curvature, estimation in laser scanning 3D point cloud data. One is based on a robust ...