Show simple item record

dc.contributor.authorZhang, K.
dc.contributor.authorTeo, Kok Lay
dc.date.accessioned2017-01-30T11:04:19Z
dc.date.available2017-01-30T11:04:19Z
dc.date.created2013-11-11T20:00:32Z
dc.date.issued2013
dc.identifier.citationZhang, K. and Teo, K.L. 2013. Convergence analysis of power penalty method for American bond option pricing. Journal of Global Optimization. 56 (4): pp. 1313-1323.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/8052
dc.identifier.doi10.1007/s10898-012-9843-1
dc.description.abstract

This paper is concerned with the convergence analysis of power penalty method to pricing American options on discount bond, where the single factor Cox–Ingrosll–Ross model is adopted for the short interest rate. The valuation of American bond option is usually formulated as a partial differential complementarity problem. We first develop a power penalty method to solve this partial differential complementarity problem, which produces a nonlinear degenerated parabolic PDE. Within the framework of variational inequalities, the solvability and convergence properties of this penalty approach are explored in a proper infinite dimensional space. Moreover, a sharp rate of convergence of the power penalty method is obtained. Finally, we show that the power penalty approach is monotonically convergent with the penalty parameter.

dc.publisherSpringer
dc.subjectcomplementarity problem
dc.subjectoption pricing
dc.subjectpenalty method
dc.subjectvariational inequalities
dc.titleConvergence analysis of power penalty method for American bond option pricing
dc.typeJournal Article
dcterms.source.volume56
dcterms.source.number4
dcterms.source.startPage1313
dcterms.source.endPage1323
dcterms.source.issn09255001
dcterms.source.titleJournal of Global Optimization
curtin.department
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record