Advances and perspectives in computational prediction of microbial gene essentiality
Citation
Source Title
ISSN
Faculty
School
Collection
Abstract
Theminimal subset of genes required for cellular growth, survival and viability of an organismare classified as essential genes. Knowledge of essential genes gives insight into the core structure and functioning of a cell. Thismight lead tomore efficient antimicrobial drug discovery, to elucidation of the correlations between genotype and phenotype, and a better understanding of theminimal requirements for a (synthetic) cell. Traditionally, constructing a catalog of essential genes for a given microbe involved costly and time-consuming laboratory experiments. While experimentalmethods have produced abundant gene essentiality data formodel organisms like Escherichia coli and Bacillus subtilis, the knowledge generated cannot automatically be extrapolated to predict essential genes in all bacteria. In addition, essential genes identified in the laboratory are by definition 'conditionally essential', as they are essential under the specified experimental conditions: these might not resemble conditions in themicroorganisms' natural habitat(s). Also, large-scale experimental assaying for essential genes is not always feasible because of the time investment required to setup these assays. The ability to rapidly and precisely identify essential genes in silico is therefore important and has great potential for applications inmedicine, biotechnology and basic biological research. Here, we review the advancesmade in the use of computationalmethods to predictmicrobial gene essentiality, perspectives for the future of these techniques and the possible practical applications of essential genes.
Related items
Showing items related by title, author, creator and subject.
-
Siva Subramaniam, Nitthiya (2012)The major histocompatibility complex (MHC) is a chromosomal region associated with immune responsiveness in vertebrates. Over four decades many studies have demonstrated important associations between MHC loci and disease ...
-
Chow, A.; Ghassemifar, Reza; Finlayson, J. (2013)Aims: Alpha (α) thalassaemia may be caused by large deletions of the α globin gene(s), or rarely, non-deletional mutations. Both types of mutations may co-exist, and if located on the same allele (α0), produce a reproductive ...
-
Chew, C.; Valente, F.; Wallace, H.; Tan, J.; Temple, S.; Price, Patricia (2012)The region spanning the tumor necrosis factor (TNF) cluster in the human major histocompatibility complex (MHC) has been implicated in susceptibility to numerous immunopathological and inflammatory diseases. However, ...