Show simple item record

dc.contributor.authorRiddell, Hugh
dc.contributor.authorLappe, M.
dc.date.accessioned2020-09-07T03:03:31Z
dc.date.available2020-09-07T03:03:31Z
dc.date.issued2017
dc.identifier.citationRiddell, H. and Lappe, M. 2017. Biological motion cues aid identification of self-motion from optic flow but not heading detection. Journal of Vision. 17 (12): Article No.19.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/80929
dc.identifier.doi10.1167/17.12.19
dc.description.abstract

© 2017 The Authors.

When we move through the world, a pattern of expanding optic flow is generated on the retina. In completely rigid environments, this pattern signals one's direction of heading and is an important source of information for navigation. When we walk towards an oncoming person, the optic environment is not rigid, as the motion vectors generated by the other person represent a composite of that person's movement, his or her limb motion, and the observer's self-motion. Though this biological motion obfuscates the optic flow pattern, it also provides cues about the movement of other actors in the environment. It may be the case that the visual system takes advantage of these cues to simplify the decomposition of optic flow in the presence of other moving people. The current study sought to probe this possibility. In four experiments self-motion was simulated through an environment that was empty except for a single, walking point-light biological motion stimulus. We found that by using biological motion cues, observers were able to identify the presence of selfmotion despite the lack of stable scene information. However, when estimating heading based on these stimuli, the pattern of observer heading estimates could be approximately reproduced by computing the vector sum of the walker's translation and the stimulated selfmotion. This suggests that though biological motion can be used to disentangle self-motion in ambiguous situations, optic flow analysis does not use this information to derive heading estimates.

dc.languageeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectAdult
dc.subjectCues
dc.subjectFemale
dc.subjectHumans
dc.subjectLinear Models
dc.subjectMale
dc.subjectMotion Perception
dc.subjectOptic Flow
dc.subjectWalking
dc.subjectYoung Adult
dc.titleBiological motion cues aid identification of self-motion from optic flow but not heading detection
dc.typeJournal Article
dcterms.source.volume17
dcterms.source.number12
dcterms.source.startPage19
dcterms.source.issn1534-7362
dcterms.source.titleJournal of Vision
dc.date.updated2020-09-07T03:03:31Z
curtin.departmentSchool of Psychology
curtin.accessStatusOpen access
curtin.facultyFaculty of Health Sciences
curtin.contributor.orcidRiddell, Hugh [0000-0001-8218-7822]
dcterms.source.eissn1534-7362
curtin.contributor.scopusauthoridRiddell, Hugh [56741049600]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/