Verification of GNSS Multipath and Positioning in Urban Areas Using 3D maps
Citation
Source Title
ISSN
Faculty
School
Remarks
© 2020 The Institute of Electronics, Information and Communication Engineers. Use for non-commercial purposes and does not unfairly infringe on the IEICE’s interests. Published on J-STAGE under IEICE Communications Express, with permission from author and publisher.
Collection
Abstract
The reflections and diffractions of global navigation satellite system (GNSS) signals from buildings may produce large measurement errors. Detecting non-line-of-sight signals using 3D maps is a means to detect and exclude satellites with large measurement errors. However, the true position is typically needed for using 3D maps. In this study, we verify the assumption that an approximate user position can be used when using 3D maps. We found that the correct fixed position of real-time kinematic GNSS (RTK-GNSS) could be achieved when approximate positions for RTK-GNSS assisted by 3D maps were within 5-15 m from the true position.
Related items
Showing items related by title, author, creator and subject.
-
Arora, Balwinder Singh (2012)The precise positioning applications have long been carried out using dual frequency carrier phase and code observables from the Global Positioning System (GPS). The carrier phase observables are very precise in comparison ...
-
Kaloop, M.; Yigit, Cemal; El-Mowafy, Ahmed ; Dindar, A.; Bezcioglu, M.; Hu, J. (2020)Nowadays, the high rate GNSS (Global Navigation Satellite Systems) positioning methods are widely used as a complementary tool to other geotechnical sensors, such as accelerometers, seismometers, and inertial measurement ...
-
El-Mowafy, Ahmed ; Wang, Kan; Allahvirdir Zadeh, Amir (2022)Signals from the emerging Low Earth Orbit (LEO) satellites from mega-constellations that broadcast internet, such as Starlink (Space X), OneWeb, Iridium etc., also known as “signals of opportunity” (SOP), can potentially ...