Prediction of RTK positioning integrity for journey planning
Citation
Source Title
ISSN
Faculty
School
Collection
Abstract
Positioning integrity is crucial for Intelligent Transport Systems (ITS) applications. In this article, a method is presented for prediction of GNSS positioning integrity for ITS journey planning. This information, in addition to other route information, such as distance and time, can be utilized to choose the safest and economical route. We propose to combine the Advanced Receiver Autonomous Integrity Monitoring (ARAIM) technique, tailored for ITS, with 3D city models. Positioning is performed by GNSS Real-Time Kinematic (RTK) method, which can provide the accuracy required for ITS. A new threat model employed for computation of the protection levels (PLs) for RTK positioning is discussed. Demonstration of the proposed approach is performed through a kinematic test in an urban area in Tokyo. The comparison between the prediction method and the actual observations show that the two estimates close satellite geometry and PLs. The method produced PLs that bounds the actual position errors all the time and they were less than the preset alert limit.
Related items
Showing items related by title, author, creator and subject.
-
Parvaneh, Shahriar (2010)Background. The growing population of people with acquired brain injury (ABI) requires a strong focus on clients to be integrated into the community in order to use their productive skills in society, to help them live ...
-
El-Mowafy, Ahmed ; Wang, Kan; El-Sayed, Hassan (2022)Integrity monitoring (IM) is a vital task for precise real-time positioning in road transportation, autonomous driving, and drones, where safety is essential. IM has the main tasks of detection and exclusion of faulty ...
-
El-Mowafy, Ahmed ; Imparato, D. (2018)© 2018 Institute of Navigation. All rights reserved. Intelligent transportation systems (ITS) and autonomous vehicles need accurate localization solutions for applications such as lane identification and collision avoidance. ...