Evaluating temporal stability of the New Zealand quasigeoid following the 2016 Kaikōura earthquake using satellite radar remote sensing
dc.contributor.author | McCubbine, J.C. | |
dc.contributor.author | Stagpoole, V. | |
dc.contributor.author | Caratori Tontini, F. | |
dc.contributor.author | Featherstone, Will | |
dc.contributor.author | Garthwaite, M.C. | |
dc.contributor.author | Brown, N.J. | |
dc.contributor.author | Amos, M.J. | |
dc.contributor.author | Fukuda, Y. | |
dc.contributor.author | Kazama, T. | |
dc.contributor.author | Takiguchi, H. | |
dc.contributor.author | Nishijima, J. | |
dc.date.accessioned | 2020-11-08T12:17:30Z | |
dc.date.available | 2020-11-08T12:17:30Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | McCubbine, J.C. and Stagpoole, V. and Caratori Tontini, F. and Featherstone, W.E. and Garthwaite, M.C. and Brown, N.J. and Amos, M.J. et al. 2020. Evaluating temporal stability of the New Zealand quasigeoid following the 2016 Kaikōura earthquake using satellite radar remote sensing. Geophysical Journal International. 220 (3): pp. 1917-1927. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/81640 | |
dc.identifier.doi | 10.1093/gji/ggz536 | |
dc.description.abstract |
Quasigeoid models can be determined from surface gravity anomalies, so are sensitive to changes in the shape of the topography as well as changes in gravity. Here we present results of forward modelling gravity/quasigeoid changes from synthetic aperture radar data following the 2016 Mw 7.8 Kaikōura earthquake with land uplift of up to 10 m. We assess the impact of the topographic deformation on the reference surface of the New Zealand vertical datum in lieu of costly field gravity field measurements. The most significant modelled gravity and quasigeoid changes are-2.9 mGal and 5-7 mm, respectively. We compare our forward modelled gravity signal to terrestrial gravity observation data and show that differences between the data sets have a standard deviation of ±0.1 mGal. The largest modelled change in the quasigeoid is an order of magnitude smaller than the 57.7 mm estimated precision of the most recently computed NZGeoid model over the Kaikōura region. Modelled quasigeoid changes implied by this particular deformation event are not statistically significant with respect to estimated precision of the New Zealand quasigeoid model. | |
dc.language | English | |
dc.publisher | OXFORD UNIV PRESS | |
dc.subject | Science & Technology | |
dc.subject | Physical Sciences | |
dc.subject | Geochemistry & Geophysics | |
dc.subject | Geopotential theory | |
dc.subject | Time variable gravity | |
dc.subject | New Zealand | |
dc.subject | GEOID HEIGHTS | |
dc.subject | MODEL | |
dc.title | Evaluating temporal stability of the New Zealand quasigeoid following the 2016 Kaikōura earthquake using satellite radar remote sensing | |
dc.type | Journal Article | |
dcterms.source.volume | 220 | |
dcterms.source.number | 3 | |
dcterms.source.startPage | 1917 | |
dcterms.source.endPage | 1927 | |
dcterms.source.issn | 0956-540X | |
dcterms.source.title | Geophysical Journal International | |
dc.date.updated | 2020-11-08T12:17:26Z | |
curtin.note |
This article has been accepted for publication in Geophysical Journal International ©: The Author(s) 2019. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. | |
curtin.department | School of Earth and Planetary Sciences (EPS) | |
curtin.accessStatus | Open access | |
curtin.faculty | Faculty of Science and Engineering | |
curtin.contributor.orcid | Featherstone, Will [0000-0001-9644-4535] | |
curtin.contributor.researcherid | Featherstone, Will [B-7955-2010] | |
dcterms.source.eissn | 1365-246X | |
curtin.contributor.scopusauthorid | Featherstone, Will [7005963784] |