A Sequential Monte Carlo Framework for Noise Filtering in InSAR Time Series
Citation
Source Title
ISSN
Faculty
School
Remarks
Copyright © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in otherworks.
Collection
Abstract
This article proposes an alternative filtering technique to improve interferometric synthetic aperture radar (InSAR) time series by reducing residual noise while retaining the ground deformation signal. To this end, for the first time, a data-driven approach is introduced, which is based on Takens's method within the sequential Monte Carlo framework, allowing for a model-free approach to filter noisy data. Both a Kalman-based filter and a particle filter (PF) are applied within this framework to investigate their impact on retrieving the signals. More specifically, PF and particle smoother [PaSm; to avoid confusion with persistent scatterers (PSs)] are tested for their ability to deal with non-Gaussian noise. A synthetic test based on simulated InSAR time series, as well as a real test, is designed to investigate the capability of the proposed approach compared with the spatiotemporal filtering of InSAR time series. Results indicate that PFs and more specifically PaSm perform better than other applied methods, as indicated by reduced errors in both tests. Two other variants of PF and adaptive unscented Kalman filter (AUKF) are presented and are found to be able to perform similar to PaSm but with reduced computation time. This article suggests that PFs tested here could be applied in InSAR processing chains.
Related items
Showing items related by title, author, creator and subject.
-
Baran, Ireneusz (2004)Synthetic aperture radar interferometry (InSAR) is a technique that enables generation of Digital Elevation Models (DEMs) and detection of surface motion at the centimetre level using radar signals transmitted from a ...
-
Bui, Luyen ; Featherstone, Will ; Filmer, Mick (2020)© 2020 The interferometric synthetic aperture radar (InSAR) small baseline subset (SBAS) technique can be applied to land with varying deformation magnitudes ranging from mm/yr to tens of cm/yr. SBAS defines a network of ...
-
Evans, Brian J. (1984)The seismic method in exploration geophysics consists of creating a mechanical disturbance at or close to the surface of the earth, and observing its effects at a number of chosen locations along the surface. The purpose ...