Optimal Thresholding of Predictors in Mineral Prospectivity Analysis
dc.contributor.author | Baddeley, Adrian | |
dc.contributor.author | Brown, Warick | |
dc.contributor.author | Milne, Robin K | |
dc.contributor.author | Nair, Gopalan | |
dc.contributor.author | Rakshit, Suman | |
dc.contributor.author | Lawrence, Tom | |
dc.contributor.author | Phatak, Aloke | |
dc.contributor.author | Fu, Shih Ching | |
dc.date.accessioned | 2020-12-03T13:53:35Z | |
dc.date.available | 2020-12-03T13:53:35Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Baddeley, A. and Brown, W. and Milne, R.K. and Nair, G. and Rakshit, S. and Lawrence, T. and Phatak, A. et al. 2020. Optimal Thresholding of Predictors in Mineral Prospectivity Analysis. Natural Resources Research. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/81939 | |
dc.identifier.doi | 10.1007/s11053-020-09769-2 | |
dc.description.abstract |
© 2020, International Association for Mathematical Geosciences. Some methods for analysing mineral prospectivity, especially the weights of evidence technique, require the predictor variables to be binary values. When the original evidence data are numerical values, such as geochemical indices, they can be converted to binary values by thresholding. When the evidence layer is a spatial feature such as a geological fault system, it can be converted to a binary predictor by buffering at a suitable cut-off distance. This paper reviews methods for selecting the best threshold or cut-off value and compares their performance. The review covers techniques which are well known in prospectivity analysis as well as unfamiliar techniques borrowed from other literature. Methods include maximisation of the estimated contrast, Studentised contrast, χ2 test statistic, Youden criterion, statistical likelihood, Akman–Raftery criterion, and curvature of the capture–efficiency curve. We identify connections between the different methods, and we highlight a common technical error in their application. Simulation experiments indicate that the Youden criterion has the best performance for selection of the threshold or cut-off value, assuming that a simple binary threshold relationship truly holds. If the relationship between predictor and prospectivity is more complicated, then the likelihood method is the most easily adaptable. The weights-of-evidence contrast performs poorly overall. These conclusions are supported by our analysis of data from the Murchison goldfields, Western Australia. We also propose a bootstrap method for calculating standard errors and confidence intervals for the location of the threshold. | |
dc.language | English | |
dc.publisher | Kluwer Academic/Plenum Publishers | |
dc.relation.sponsoredby | http://purl.org/au-research/grants/arc/IC180100030 | |
dc.subject | Science & Technology | |
dc.subject | Physical Sciences | |
dc.subject | Geosciences, Multidisciplinary | |
dc.subject | Geology | |
dc.subject | Akman-Raftery criterion | |
dc.subject | Capture-efficiency curve | |
dc.subject | Change-point estimation | |
dc.subject | Likelihood | |
dc.subject | Weights of evidence | |
dc.subject | Youden index | |
dc.subject | WEIGHTS-OF-EVIDENCE | |
dc.subject | CHANGE-POINT ESTIMATION | |
dc.subject | OROGENIC GOLD DEPOSITS | |
dc.subject | LOGISTIC-REGRESSION | |
dc.subject | SPATIAL ASSOCIATION | |
dc.subject | MAXIMUM-LIKELIHOOD | |
dc.subject | POISSON-PROCESS | |
dc.subject | YILGARN CRATON | |
dc.subject | INFERENCE | |
dc.subject | TIME | |
dc.title | Optimal Thresholding of Predictors in Mineral Prospectivity Analysis | |
dc.type | Journal Article | |
dcterms.source.issn | 1520-7439 | |
dcterms.source.title | Natural Resources Research | |
dc.date.updated | 2020-12-03T13:53:35Z | |
curtin.note |
This is a post-peer-review, pre-copyedit version of an article published in Natural Resources Research. The final authenticated version is available online at: http://doi.org/10.1007/s11053-020-09769-2 | |
curtin.department | School of Electrical Engineering, Computing and Mathematical Sciences (EECMS) | |
curtin.accessStatus | Open access | |
curtin.faculty | Faculty of Science and Engineering | |
curtin.contributor.orcid | Rakshit, Suman [0000-0003-0052-128X] | |
curtin.contributor.orcid | Baddeley, Adrian [0000-0001-9499-8382] | |
curtin.contributor.orcid | Phatak, Aloke [0000-0002-0637-7461] | |
curtin.contributor.orcid | Fu, Shih Ching [0000-0002-9077-6026] | |
curtin.contributor.orcid | Brown, Warick [0000-0002-8257-888X] | |
curtin.contributor.researcherid | Baddeley, Adrian [E-3661-2010] | |
curtin.contributor.researcherid | Phatak, Aloke [D-5166-2009] | |
dcterms.source.eissn | 1573-8981 | |
curtin.contributor.scopusauthorid | Rakshit, Suman [57193350564] | |
curtin.contributor.scopusauthorid | Baddeley, Adrian [7101639465] | |
curtin.contributor.scopusauthorid | Phatak, Aloke [57188762833] [7005067216] | |
curtin.contributor.scopusauthorid | Fu, Shih Ching [22334071700] |