Hydroxylated closo-Dodecaborates M2B12(OH)12 (M = Li, Na, K, and Cs); Structural Analysis, Thermal Properties, and Solid-State Ionic Conductivity
Access Status
Authors
Date
2020Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
Copyright © 2020 American Chemical Society.
Closo-borates and derivatives thereof have shown great potential as electrolyte materials for all-solid-state batteries owing to their exceptional ionic conductivity and high thermal and chemical stability. However, because of the myriad of possible chemical modifications of the large, complex anion, only a fraction of closo-borate derivatives has so far been investigated as electrolyte materials. Here, the crystal structures, thermal properties, and ionic conductivities of M2B12(OH)12 (M = Li, Na, K, and Cs) are investigated with a focus on their possible utilization as new solid-state ion conductors for solid-state batteries. The compounds generally show rich thermal polymorphism, with eight identified polymorphs among the four dehydrated compounds. Both Li2B12(OH)12 and Na2B12(OH)12 undergo a first-order transition, in which the cation sublattices become disordered, resulting in an order of magnitude jump in ionic conductivity for Na2B12(OH)12. K2B12(OH)12 undergoes a second-order polymorphic transition driven by a change in the anion-cation interaction, with no evidence of dynamic disorder. The ionic conductivities of M2B12(OH)12 range from 1.60 × 10-8 to 5.97 × 10-5 S cm-1 at 250 °C for M = Cs and Li, respectively, showing decreasing conductivity with increasing cation size. Compared with the analogous M2B12H12 compounds, such relatively low conductivities are suggested to be a consequence of strong and directional anion-cation interactions, resulting in a more static anion framework.
Related items
Showing items related by title, author, creator and subject.
-
Wu, Congcong; Guo, Siyao; Jia, Lichao; Han, Song; Chi, Bo; Pu, Jian; Jian, Li (2013)Polymer electrolytes, acting as an ionic solid-state conducting phase, have been demonstrated as promising charge carrying mediators for energy storage devices. However, the large majority of polymer electrolyte studies ...
-
Transport, electrochemical and thermophysical properties of two N-donor-functionalised ionic liquidsRüther, T.; Harris, K.; Horne, M.; Kanakubo, M.; Rodopoulos, T.; Veder, Jean-pierre; Woolf, L. (2013)Two N-donor-functionalised ionic liquids (ILs), 1-ethyl-1,4- dimethylpiperazinium bis(trifluoromethylsulfonyl)amide (1) and 1-(2-dimethylaminoethyl)-dimethylethylammonium bis(trifluoromethylsulfonyl)amide (2), were ...
-
Allpike, Bradley (2008)Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...