Synchrotron X-ray fluorescence microscopy-enabled elemental mapping illuminates the “battle for nutrients” between plant and pathogen
Access Status
Authors
Date
2021Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Collection
Abstract
Metal homeostasis is integral to normal plant growth and development. During plant-pathogen interactions, the host and pathogen compete for the same nutrients, potentially impacting on nutritional homeostasis. Our knowledge of outcome of the interaction in terms of metal homeostasis is still limited. Here, we employed X-ray fluorescence microscopy (XFM) beamline at the Australian Synchrotron to visualise and analyse the fate of nutrients in wheat leaves infected with Pyrenophora tritici-repentis, a necrotrophic fungal pathogen. We sought to (i) evaluate the utility of XFM for sub-micron mapping of essential mineral nutrients and ii) examine the spatiotemporal impact of a pathogen on nutrient distribution in leaves. XFM maps of K, Ca, Fe, Cu, Mn, and Zn revealed substantial hyperaccumulation within, and depletion around, the infected region relative to uninfected control samples. Fungal mycelia were visualised as threadlike structures in the Cu and Zn maps. The hyperaccumulation of Mn in the lesion and localised depletion in asymptomatic tissue surrounding the lesion was unexpected. Similarly, Ca accumulated at the periphery of symptomatic region and as micro-accumulations aligning with fungal mycelia. Collectively, our results highlight that XFM imaging provides capability for high resolution mapping of elements to probe nutrient distribution in hydrated diseased leaves in situ.
Related items
Showing items related by title, author, creator and subject.
-
Thatcher, L.; Williams, A.; Garg, G.; Buck, S.; Singh, Karam (2016)Background: Pathogenic members of the Fusarium oxysporum species complex are responsible for vascular wilt disease on many important crops including legumes, where they can be one of the most destructive disease causing ...
-
Solomon, P.; Tan, Kar-Chun; Oliver, Richard (2003)Phytopathogenic fungi must feed on their hosts to propagate and cause disease. Their ability to access the rich nutrient supply offered by living plants is one of the most obvious properties that distinguish pathogens ...
-
Rudd, J.; Kanyuka, K.; Hassani-Pak, K.; Derbyshire, Mark; Andongabo, A.; Devonshire, J.; Lysenko, A.; Saqi, M.; Desai, N.; Powers, S.; Hooper, J.; Ambroso, L.; Bharti, A.; Farmer, A.; Hammond-Kosack, K.; Dietrich, R.; Courbot, M. (2015)The hemibiotrophic fungus Zymoseptoria tritici causes Septoria tritici blotch disease of wheat (Triticum aestivum). Pathogen reproduction on wheat occurs without cell penetration, suggesting that dynamic and intimate ...