Joint exposure to various ambient air pollutants and incident heart failure: a prospective analysis in UK Biobank.
Access Status
Date
2021Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Collection
Abstract
AIMS: Little is known about the relation between the long-term joint exposure to various ambient air pollutants and the incidence of heart failure (HF). We aimed to assess the joint association of various air pollutants with HF risk and examine the modification effect of the genetic susceptibility. METHODS AND RESULTS: This study included 432 530 participants free of HF, atrial fibrillation, or coronary heart disease in the UK Biobank study. All participants were enrolled from 2006 to 2010 and followed up to 2018. The information on particulate matter (PM) with diameters ≤2.5 µm (PM2.5), ≤10 µm (PM10), and between 2.5 and 10 µm (PM2.5-10) as well as nitrogen oxides (NO2 and NOx) was collected. We newly proposed an air pollution score to assess the joint exposure to the five air pollutants through summing each pollutant concentration weighted by the regression coefficients with HF from single-pollutant models. We also calculated the weighted genetic risk score of HF. During a median of 10.1 years (4 346 642 person-years) of follow-up, we documented 4201 incident HF. The hazard ratios (HRs) [95% confidence interval (CI)] of HF for a 10 µg/m3 increase in PM2.5, PM10, PM2.5-10, NO2, and NOx were 1.85 (1.34-2.55), 1.61 (1.30-2.00), 1.13 (0.80-1.59), 1.10 (1.04-1.15), and 1.04 (1.02-1.06), respectively. We found that the air pollution score was associated with an increased risk of incident HF in a dose-response fashion. The HRs (95% CI) of HF were 1.16 (1.05-1.28), 1.19 (1.08-1.32), 1.21 (1.09-1.35), and 1.31 (1.17-1.48) in higher quintile groups compared with the lowest quintile of the air pollution score (P trend <0.001). In addition, we observed that the elevated risk of HF associated with a higher air pollution score was strengthened by the genetic susceptibility to HF. CONCLUSION: Our results indicate that the long-term joint exposure to various air pollutants including PM2.5, PM10, PM2.5-10, NO2, and NOx is associated with an elevated risk of incident HF in an additive manner. Our findings highlight the importance to comprehensively assess various air pollutants in relation to the HF risk.
Related items
Showing items related by title, author, creator and subject.
-
Goh, Louise; Dhaliwal, Satvinder; Wellborn, T.; Thompson, P.; Maycock, Bruce; Kerr, Deborah; Lee, Andy; Bertolatti, Dean; Slivkoff-Clark, Karin; Naheed, R; Coorey, Ranil; Della, Phillip (2014)Purpose: Although elevated cardiovascular disease (CVD) risk factors are associated with a higher risk of developing heart conditions across all ethnic groups, variations exist between groups in the distribution and ...
-
Mongraw-Chaffin, M.; Peters, S.; Huxley, Rachel; Woodward, M. (2015)© 2015 Elsevier Ltd. Background: The risk of developing coronary heart disease differs by sex, and accumulating evidence suggests that sex differences exist in the effect of coronary risk factors on vascular risk. So far, ...
-
Teng, T.; Williams, T.; Bremner, A.; Tohira, H.; Franklin, P.; Tonkin, A.; Jacobs, I.; Finn, Judith (2013)Introduction: Studies have linked air pollution with the incidence of acute coronary artery events and cardiovascular mortality but the association with out-of-hospital cardiac arrest (OHCA) is less clear. Aim: To examine ...