Model Age Derivation of Large Martian Impact Craters, Using Automatic Crater Counting Methods
Access Status
Authors
Date
2021Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
Determining when an impact crater formed is a complex and tedious task. However, this knowledge is crucial to understanding the geological history of planetary bodies and, more specifically, gives information on erosion rate measurements, meteorite ejection location, impact flux evolution and the loss of a magnetic field. The derivation of an individual crater's age is currently performed through manual counting. Because crater size scales as a power law, this method is limited to small (and/or young) surface areas and, in the case of the derivation of crater emplacement age, to a small set of impact craters. Here, we used a Crater Detection Algorithm, specifically retrained to detect small impact craters on large‐ and high‐resolution imagery data set to solve this issue. We applied it to a global, 5 m/pixel resolution mosaic of Mars. Here, we test the use of this data set to date 10 large impact craters. We developed a cluster analysis tool in order to distinguish potential secondary crater clusters from the primary crater population. We then use this, filtered, crater population to date each large impact crater and evaluate our results against literature ages. We found that automated counting filtered through clustering analysis produced similar model ages to manual counts. This technique can now be expanded to much wider crater dating surveys, and by extension to any other kind of Martian surface. We anticipate that this new tool will considerably expand our knowledge of the geological events that have shaped the surface of Mars, their timing and duration.
Related items
Showing items related by title, author, creator and subject.
-
Lagain, Anthony ; Benedix-Bland, Gretchen; Bland, Philip; Towner, Martin; Norman, Chris; Paxman, Jonathan; Chai, Kevin; Meka, Shiv; Anderson, Seamus (2019)Counting impact craters on surfaces of terrestrial bodies is currently the only way to estimate the age of a planetary surface and the duration of geological processes occurred in the past. This approach requires a tedious ...
-
Lagain, Anthony ; Bouley, S.; Baratoux, D.; Costard, F.; Wieczorek, M. (2019)© 2019 Elsevier Ltd Ages of geological units of planetary bodies are determined from impact crater counts on their surface. These ages are model-dependent, and several models largely used in the community assume a constant ...
-
Benedix, Gretchen ; Lagain, Anthony ; Chai, Kevin ; Meka, S.; Anderson, S.; Norman, C.; Bland, Phil ; Paxman, Jonathan ; Towner, Martin ; Tan, Tele (2020)Impact craters on solar system bodies are used to determine the relative ages of surfaces. The smaller the limiting primary crater size, the higher the spatial resolution in surface/resurfacing age dating. A manually ...