An exploration of machine‐learning estimation of ground reaction force from wearable sensor data
Access Status
Authors
Date
2020Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Remarks
© 2020 The Authors. Published by MDPI Publishing.
Collection
Abstract
This study aimed to develop a wearable sensor system, using machine‐learning models, capable of accurately estimating peak ground reaction force (GRF) during ballet jumps in the field. Female dancers (n = 30) performed a series of bilateral and unilateral ballet jumps. Dancers wore six ActiGraph Link wearable sensors (100 Hz). Data were collected simultaneously from two AMTI force platforms and synchronised with the ActiGraph data. Due to sensor hardware malfunctions and synchronisation issues, a multistage approach to model development, using a reduced data set, was taken. Using data from the 14 dancers with complete multi‐sensor synchronised data, the best single sensor was determined. Subsequently, the best single sensor model was refined and validated using all available data for that sensor (23 dancers). Root mean square error (RMSE) in body weight (BW) and correlation coefficients (r) were used to assess the GRF profile, and Bland–Altman plots were used to assess model peak GRF accuracy. The model based on sacrum data was the most accurate single sensor model (unilateral landings: RMSE = 0.24 BW, r = 0.95; bilateral landings: RMSE = 0.21 BW, r = 0.98) with the refined model still showing good accuracy (unilateral: RMSE = 0.42 BW, r = 0.80; bilateral: RMSE = 0.39 BW, r = 0.92). Machine‐learning models applied to wearable sensor data can provide a field‐based system for GRF estimation during ballet jumps.
Related items
Showing items related by title, author, creator and subject.
-
Hendry, Danica; Chai, K.; Campbell, Amity ; Hopper, L.; O’Sullivan, P.; Straker, Leon (2020)Background: Accurate and detailed measurement of a dancer’s training volume is a key requirement to understanding the relationship between a dancer’s pain and training volume. Currently, no system capable of quantifying ...
-
Hendry, Danica (2021)This thesis explored the relationship between dancers' movement quantity and quality with pain outcomes. Machine learning models applied to wearable sensor data that were capable of field-based, objective quantification ...
-
Wilson, Micah (2020)In safety-critical work environments (e.g., military, space operations), it is imperative that psycho-physical measurements do not disrupt operator's task performance. Consequently, many industries are now interested in ...