Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement

    Access Status
    Fulltext not available
    Authors
    McLellan, B.
    Williams, Ross
    Lay, J.
    Van Riessen, Arie
    Corder, Glen
    Date
    2011
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    McLellan, Benjamin C. and Williams, Ross P. and Lay, Janine and van Riessen, Arie and Corder, Glen D. 2011. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. Journal of Cleaner Production. 19: pp. 1080-1090.
    Source Title
    Journal of Cleaner Production
    DOI
    10.1016/j.jclepro.2011.02.010
    ISSN
    09596526
    School
    Department of Imaging and Applied Physics
    URI
    http://hdl.handle.net/20.500.11937/8444
    Collection
    • Curtin Research Publications
    Abstract

    Geopolymer concrete is seen as a potential alternative to standard concrete, and an opportunity to convert a variety of waste streams into useful by-products. One key driver in geopolymer development is the desire to reduce greenhouse gas emissions from the production of concrete products. This paper presents an examination of the lifecycle cost and carbon impacts of Ordinary Portland Cement (OPC) and geopolymers in an Australian context, with an identification of some key challenges for geopolymer development. The results of the examination show that there is wide variation in the calculated financial and environmental “cost” of geopolymers, which can be beneficial or detrimental depending on the source location, the energy source and the mode of transport. Some case study geopolymer concrete mixes based on typical Australian feedstocks indicate potential for a 44-64% reduction in greenhouse gas emissions while the financial costs are 7% lower to 39% higher compared with OPC.

    Related items

    Showing items related by title, author, creator and subject.

    • Permeability of ambient cured fly ash geopolymer concrete blended with additives
      Nath, P.; Sarker, Prabir (2016)
      Fly ash geopolymer concrete is a low-emission alternative building material to ordinary Portland cement (OPC) concrete. Previous studies mostly reported the properties of heat cured geopolymer concrete. However, heat ...
    • Shear and bond behaviour of reinforced fly ash-based geopolymer concrete beams
      Chang, Ee Hui (2009)
      Concrete is by far the most widely used construction material worldwide in terms of volume, and so has a huge impact on the environment, with consequences for sustainable development. Portland cement is one of the most ...
    • Bond Strengths of Geopolymer and Cement Concretes
      Sarker, Prabir (2010)
      Geopolymer is an inorganic alumino-silicate product that shows good bonding properties. Geopolymer binders are used together with aggregates to produce geopolymer concrete which is an ideal building material for ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.