Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Towards understanding nickel converter matte solidification

    Access Status
    Fulltext not available
    Authors
    Thyse, E
    Akdogan, G.
    Taskinen, P.
    Viljoen, K
    Eksteen, Jacques
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Thyse, E and Akdogan, G. and Taskinen, P. and Viljoen, K and Eksteen, J. 2013. Towards understanding nickel converter matte solidification. Minerals Engineering. 54: pp. 39-51.
    Source Title
    Minerals Engineering
    DOI
    10.1016/j.mineng.2013.03.023
    ISSN
    08926875
    URI
    http://hdl.handle.net/20.500.11937/8485
    Collection
    • Curtin Research Publications
    Abstract

    Nickel converter mattes are complex metallurgical solutions of Ni, Cu, S, Fe and O along with low concentrations of many other elements including Co, Pb and PGEs. Studies on how such complex mixed solutions evolve upon cooling may contribute towards an improved understanding of matte solidification. Liquidus and primary phase equilibria were calculated for Cu–Ni–S ternaries including fixed iron and cobalt concentrations. True liquid matte starting compositions and calculated assays were subsequently superimposed on relevant Cu–Ni–S_FeCo ternary systems. Multiphase cooling equilibria were also calculated for variable Cu–Ni–S–Fe–Co–O matte systems. In addition, actual industrial mattes were analysed using automated mineralogy, electron probe microanalysis and field emission scanning electron microscopy.The effect of the end composition of the ternary systems at fixed iron and cobalt concentrations on the liquidus temperature range has been quantified. The liquidus temperature range is lowered when the fixed iron and cobalt concentration decreases. The solidification pathway of oxygen-free liquid matte has been estimated. Moreover, it has been shown that variations in the starting composition of oxygen-free matte alter the path of solidification towards the eutectic. The examination of multiphase cooling equilibria for variable Cu–Ni–S–Fe–Co–O liquid phase systems provided a quantitative understanding of solidification processes to within ±2.5 °C. The analysed nickel and copper-sulphide phase structures have shown to exhibit chemical non-equilibrium within high and low iron matte. It can be concluded that the present study has provided a coherent insight into nickel converter matte solidification processes.

    Related items

    Showing items related by title, author, creator and subject.

    • PGM converter matte mineral characteristics and effects on downstream processing
      Thyse, E.; Akdogan, G.; Mainza, A.; Eksteen, Jacques (2017)
      © 2017 Elsevier B.V. There is little in-depth study on the downstream processing characteristics of granulated PGM-containing converter matte, particularly related to grinding and liberation behavior closely associated ...
    • The effect of changes in iron-endpoint during Peirce–Smith convertingon PGE-containing nickel converter matte mineralization
      Thyse, E.; Akdogan, G.; Eksteen, Jacques (2011)
      PGE-containing nickel-copper converter matte is blown to an iron-endpoint during Peirce–Smith conversion. The matte is granulated after conversion and the process can be described as fast cooling. The effect of changes ...
    • Leaching of Ni–Cu–Fe–S converter matte at varying iron endpoints; mineralogical changes and behaviour of Ir, Rh and Ru
      van Schalkwyk, R; Eksteen, Jacques; Akdogan, G. (2013)
      The Bushveld Igneous Complex in South Africa is a rich source of platinum group elements (PGEs), as well as base metal sulphides. Typical beneficiation routes entail milling and flotation, smelting, matte converting and ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.