Effects of bedding planes on the fracture characteristics of coal under dynamic loading
Citation
Source Title
ISSN
Faculty
School
Collection
Abstract
To investigate the influence of bedding planes on its fracture characteristics under dynamic loading, testing and numerical simulations are carried out on semi-circular bend specimens of coal. It is shown that the fracture load and dynamic initiation fracture toughness decrease as the increase of bedding-plane angle. The crack propagation direction is jointly controlled by the maximum principal stress and bedding planes. Based on the digital speckle correlation method, it is found out that, due to stress concentration, strain at the initial loading stage concentrates around crack tip. After crack initiation, there is a specific strain gradient with a candle flame-like shape on the surface of a specimen. The opening displacements at crack tip can be divided into stable and linearly increasing phases. Further, a continuum-based discrete element method is applied to virtually reproduce these fracture characteristics, which are instructive to study dynamic anisotropy in fracture of coal.
Related items
Showing items related by title, author, creator and subject.
-
Galvin, Robert (2007)Development of a hydrocarbon reservoir requires information about the type of fluid that saturates the pore space, and the permeability distribution that determines how the fluid can be extracted. The presence of fractures ...
-
Chen, Y.; Bennour, Ziad ; Nagaya, Y.; Yano, S.; Suzuki, T.; Ishida, T.; Akai, T.; Takagi, S. (2015)© 2015 by the Canadian Institute of Mining, Metallurgy & Petroleum and ISRM. It is often reported that the concept of single-plane-fracture is not sufficient to account for the productivity from shale gas/oil wells. ...
-
Nazaralizadeh, S.; Rasouli, Vamegh (2011)Gas production from coal seams has attracted a great deal of attention around the world and in particular in Australia with its rich resources of coal. In general the coal bed methane (CBM) resources are located at lower ...