Show simple item record

dc.contributor.authorCui, Liuliang
dc.contributor.authorZhang, Xihong
dc.contributor.authorHao, Hong
dc.contributor.authorKong, Qingzhao
dc.date.accessioned2021-11-13T13:24:30Z
dc.date.available2021-11-13T13:24:30Z
dc.date.issued2022
dc.identifier.citationCui, L. and Zhang, X. and Hao, H. and Kong, Q. 2022. Improved resistance functions for RC elements accounting for compressive and tensile membrane actions. Engineering Structures. 251: Article No. 113549.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/86376
dc.identifier.doi10.1016/j.engstruct.2021.113549
dc.description.abstract

Membrane actions commonly present in reinforced concrete elements as a result of restrained boundary conditions and geometry of deformations, which could substantially improve the ultimate flexural load-resistance as compared to that using yield line theory. Nevertheless, most current design manuals do not consider membrane effect because of a short of proper analysis method. This paper proposed an improved resistance model for RC (reinforced concrete) elements which considers both compressive and tensile membrane actions. Firstly, the derivation of the proposed membrane model was presented in detail. It was then validated with available testing data, in which good agreement was found on the load-deflection relationship of RC element between the estimation using the proposed model and testing data. Combining with the equivalent SDOF (single-degree-of-freedom) analysis method, the dynamic responses of structural elements subjected to blast loads could be more accurately predicted as compared to the common elastic-perfectly-plastic resistance assumption in design guides. The proposed method was further verified with existing field blast testing results. Parametric studies were then carried out to examine the influences of critical design parameters for membrane behaviors including reinforcement ratio, span-to-depth ratio, and restraint stiffness. Last but not the least, based on the proposed analytical method a series of diagrams for modifying the design loading capacity estimated by UFC (Unified Facilities Criteria) design guides without considering the membrane effects were derived for more accurate and easy predictions of loading capacities in engineering applications.

dc.publisherElsevier
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP190103253
dc.titleImproved resistance functions for RC elements accounting for compressive and tensile membrane actions
dc.typeJournal Article
dcterms.source.volume251
dcterms.source.issn0141-0296
dcterms.source.titleEngineering Structures
dc.date.updated2021-11-13T13:24:30Z
curtin.departmentSchool of Civil and Mechanical Engineering
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidZhang, Xihong [0000-0002-8667-4692]
curtin.contributor.scopusauthoridZhang, Xihong [53065126400]


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record