Show simple item record

dc.contributor.authorYeap, Simon SGH
dc.contributor.authorBell, R.W.
dc.contributor.authorScanlan, C.
dc.contributor.authorStefanova, Katia
dc.contributor.authorHarper, R.
dc.contributor.authorDavies, S.
dc.date.accessioned2022-01-28T04:10:04Z
dc.date.available2022-01-28T04:10:04Z
dc.date.issued2022
dc.identifier.citationYeap, S.S.G.H. and Bell, R.W. and Scanlan, C. and Stefanova, K. and Harper, R. and Davies, S. 2022. Soil water repellence increased early wheat growth and nutrient uptake. Plant and Soil.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/87527
dc.identifier.doi10.1007/s11104-021-05282-4
dc.description.abstract

Purpose: Soil water repellence causes uneven soil wetting which can constrain dryland crop and pasture establishment and yield. The same processes are likely to affect nutrient availability from soil and fertiliser, but the effects of repellence on crop growth and nutrition per se have seldom been reported. Here, we investigated early wheat (Triticum aestivum cv. Mace) growth and nutrient uptake responses to repellence.

Methods: Wheat was furrow-sown in severely repellent sandy loam soil (with a wettable furrow base to allow for germination) or completely wettable soil, under uniform plant density and variable topsoil thickness (20 or 100 mm) and fertiliser band placement (below or away from the seed). Tiller number, shoot dry matter, shoot N concentration, total nutrient uptake, and root length density (RLD) were determined.

Results: Contrary to expectations, repellence significantly increased tiller number (by up to 2 tillers per plant), shoot dry matter (by 82%), shoot N concentration (by 0.3% N), and total nutrient uptake (by 87%) at 51 days after sowing, regardless of topsoil thickness and fertiliser placement. In the furrow, RLD of repellent treatments was also nearly double that in wettable treatments when fertiliser was banded below the seed. Results suggest that preferential soil wetting of the furrow in repellent treatments favoured plant nutrient uptake under regular but low water supply.

Conclusion: We conclude that for water-repellent soils with limited water supply, water harvesting techniques such as furrow sowing and banding wetting agents could boost water and nutrient uptake and early crop growth.

dc.publisherSpringer Nature
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleSoil water repellence increased early wheat growth and nutrient uptake
dc.typeJournal Article
dcterms.source.issn0032-079X
dcterms.source.titlePlant and Soil
dc.date.updated2022-01-28T04:10:03Z
curtin.departmentSchool of Molecular and Life Sciences (MLS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidStefanova, Katia [0000-0002-7418-5031]
curtin.contributor.scopusauthoridStefanova, Katia [23981298900]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/