Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Bacterial mechanosensitive channels: Models for studying mechanosensory transduction

    Access Status
    Fulltext not available
    Authors
    Martinac, B.
    Nomura, T.
    Chi, G.
    Petrov, E.
    Rohde, P.
    Battle, A.
    Foo, A.
    Constantine, M.
    Rothnagel, R.
    Carne, S.
    Deplazes, Evelyne
    Cornell, B.
    Cranfield, C.
    Hankamer, B.
    Landsberg, M.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Martinac, B. and Nomura, T. and Chi, G. and Petrov, E. and Rohde, P. and Battle, A. and Foo, A. et al. 2014. Bacterial mechanosensitive channels: Models for studying mechanosensory transduction. Antioxidants & Redox Signaling. 20 (6): pp. 952-969.
    Source Title
    Antioxidants & Redox Signaling
    DOI
    10.1089/ars.2013.5471
    ISSN
    1523-0864
    School
    School of Biomedical Sciences
    URI
    http://hdl.handle.net/20.500.11937/8786
    Collection
    • Curtin Research Publications
    Abstract

    Significance: Sensations of touch and hearing are manifestations of mechanical contact and air pressure acting on touch receptors and hair cells of the inner ear, respectively. In bacteria, osmotic pressure exerts a significant mechanical force on their cellular membrane. Bacteria have evolved mechanosensitive (MS) channels to cope with excessive turgor pressure resulting from a hypo-osmotic shock. MS channel opening allows the expulsion of osmolytes and water, thereby restoring normal cellular turgor and preventing cell lysis. Recent Advances: As biological force-sensing systems, MS channels have been identified as the best examples of membrane proteins coupling molecular dynamics to cellular mechanics. The bacterial MS channel of large conductance (MscL) and MS channel of small conductance (MscS) have been subjected to extensive biophysical, biochemical, genetic, and structural analyses. These studies have established MscL and MscS as model systems for mechanosensory transduction. Critical Issues: In recent years, MS ion channels in mammalian cells have moved into focus of mechanotransduction research, accompanied by an increased awareness of the role they may play in the pathophysiology of diseases, including cardiac hypertrophy, muscular dystrophy, or Xerocytosis. Future Directions: A recent exciting development includes the molecular identification of Piezo proteins, which function as nonselective cation channels in mechanosensory transduction associated with senses of touch and pain. Since research on Piezo channels is very young, applying lessons learned from studies of bacterial MS channels to establishing the mechanism by which the Piezo channels are mechanically activated remains one of the future challenges toward a better understanding of the role that MS channels play in mechanobiology.

    Related items

    Showing items related by title, author, creator and subject.

    • Heat transfer and fluid flow characteristics of synthetic jets
      Jagannatha, Deepak (2009)
      This thesis presents a fundamental research investigation that examines the thermal and fluid flow behaviour of a special pulsating fluid jet mechanism called synthetic jet. It is envisaged that this novel heat transfer ...
    • Correlations Developed for Estimation of Hydraulic Parameters of Rough Fractures Through the Simulation of JRC Flow Channels
      Rasouli, Vamegh; Hosseinian, Armin (2011)
      The hydro-mechanical response of fractured rock masses is complex, due partly to the presence of fractures at different scales. Surface morphology has a significant influence on fluid flow behaviour of a fracture. Different ...
    • Low order channel estimation for CDMA systems
      Abd El-Sallam, Amar (2005)
      New approaches and algorithms are developed for the identification and estimation of low order models that represent multipath channel effects in Code Division Multiple Access (CDMA) communication systems. Based on these ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.