Show simple item record

dc.contributor.authorJavaid, Shaghraf
dc.contributor.authorXu, Xiaomin
dc.contributor.authorChen, Wei
dc.contributor.authorChen, Jiayi
dc.contributor.authorHsu, H.Y.
dc.contributor.authorWang, S.
dc.contributor.authorYang, X.
dc.contributor.authorLi, Y.
dc.contributor.authorShao, Zongping
dc.contributor.authorJones, Franca
dc.contributor.authorJia, Guohua
dc.date.accessioned2022-02-28T04:23:32Z
dc.date.available2022-02-28T04:23:32Z
dc.date.issued2021
dc.identifier.citationJavaid, S. and Xu, X. and Chen, W. and Chen, J. and Hsu, H.Y. and Wang, S. and Yang, X. et al. 2021. Ni2+/Co2+ doped Au-Fe7S8 nanoplatelets with exceptionally high oxygen evolution reaction activity. Nano Energy. 89: Article No. 106463.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/87966
dc.identifier.doi10.1016/j.nanoen.2021.106463
dc.description.abstract

To overcome the limited potency of energy devices such as alkaline water electrolyzers, the construction of active materials with dramatically enhanced oxygen evolution reaction (OER) performance is of great importance. Herein we developed an ion diffusion-induced doping strategy that is capable of producing Ni2+/Co2+ doped two-dimensional (2D) Au-Fe7S8 nanoplatelets (NPLs) with exceptionally high OER activity outperforming the benchmark RuO2 catalyst. The co-existence of Co and Ni in Au-Fe7S8 NPLs led to the lowest OER overpotential of 243 mV at 10 mA cm-2 and fast kinetics with a Tafel slope of 43 mV dec-1. Density functional theory (DFT) calculations demonstrated that Ni2+/Co2+ doping improves the binding of OOH species on the {001} surfaces of Au-Fe7S8 NPLs and lowers the Gibbs free energy of the OER process, which are beneficial to outstanding OER activity of the nanoplatelets.

dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/FT210100509
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/LE120100026
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleNi2+/Co2+ doped Au-Fe7S8 nanoplatelets with exceptionally high oxygen evolution reaction activity
dc.typeJournal Article
dcterms.source.volume89
dcterms.source.issn2211-2855
dcterms.source.titleNano Energy
dc.date.updated2022-02-28T04:23:30Z
curtin.departmentWASM: Minerals, Energy and Chemical Engineering
curtin.departmentSchool of Molecular and Life Sciences (MLS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidJones, Franca [0000-0002-8461-8291]
curtin.contributor.orcidShao, Zongping [0000-0002-4538-4218]
curtin.contributor.orcidJia, Guohua [0000-0003-1179-2763]
curtin.contributor.orcidXu, Xiaomin [0000-0002-0067-3331]
curtin.contributor.researcheridJones, Franca [K-7651-2013]
curtin.contributor.researcheridShao, Zongping [B-5250-2013]
curtin.contributor.researcheridJia, Guohua [C-7325-2013]
curtin.contributor.researcheridXu, Xiaomin [E-5439-2014]
curtin.contributor.scopusauthoridJones, Franca [7401454856]
curtin.contributor.scopusauthoridShao, Zongping [55904502000] [57200900274]
curtin.contributor.scopusauthoridJia, Guohua [56765222900] [7103360294]
curtin.contributor.scopusauthoridXu, Xiaomin [57060970200]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/