Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Statistical modelling of the conductivity performance of poly(3,4-ethylene- dioxythiophene/poly(styrene sulfonic acid) films

    Access Status
    Fulltext not available
    Authors
    Diah, A.W.M.
    Holdsworth, C.I.
    Nur, Darfiana
    Beh, E.
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Diah, A.W.M. and Holdsworth, C.I. and Nur, D. and Beh, E. 2016. Statistical modelling of the conductivity performance of poly(3,4-ethylene- dioxythiophene/poly(styrene sulfonic acid) films. Current Analytical Chemistry. 12 (2): pp. 124-140.
    Source Title
    Current Analytical Chemistry
    DOI
    10.2174/1573411011666150819190228
    ISSN
    1573-4110
    Faculty
    Faculty of Science and Engineering
    School
    School of Elec Eng, Comp and Math Sci (EECMS)
    URI
    http://hdl.handle.net/20.500.11937/88547
    Collection
    • Curtin Research Publications
    Abstract

    This paper presents a comprehensive statistical evaluation of the conductivity performance of PEDOT/PSS films generated at various spin coating speeds (1000 to 5000 rpm) by correspondence analysis (CA), regression and ANOVA models. Poly(3,4-ethylenedioxythiophene) (PEDOT) is a highly conducting insoluble polymer which, when doped with poly(styrene sulfonic acid) (PSS) in water, results in a dispersion with good film forming properties. Our interest in PEDOT/PSS is in its application as an interfacial layer and gate electrode in organic photovoltaic and organic field effect transistor devices, respectively. The generation of a homogeneous spun-cast layer of PEDOT/PSS over the entire substrate for these intended applications is a function of the spin-coating speed which, in turn, affects the thickness of the film and, consequently, its conductivity measured by the four point probe. From correspondence analysis, we find that only the 1000 rpm spin-coating speed is strongly associated with high thickness and high resistivity (i.e. low conductivity), although further analysis of speeds 2000 - 5000 rpm shows that the spin-coating speed is still associated with the thickness of the films, and subsequently, their conductivities, such that the thinnest and most conductive films result from the highest spin-coating speed (5000 rpm). We also observed the phenomenon of the horseshoe effect from the CA displays and discussed the reasons for not resorting to detrending solutions for dealing with its presence. From multiple and nonlinear regression models, spin-coating speeds 1000 and 2000 rpm were found to produce films of less precise conductivity values as reflected in the absolute value of mean of residuals of nonlinear regression models while more precise and optimal conductivity values are obtained when the films are generated between 3000 and 5000 rpm. The ANOVA models showed that the means of conductivity of films obtained at 1000 rpm is statistically significantly different to those from higher spin coating speeds and that there is no significant difference between the conductivity of films generated using spin coating speeds 2000 and 3000 rpm and between spin coating speeds 4000 and 5000 rpm. Further, the conductivity of films from spin coating speeds 4000-5000 rpm are higher and more precise than those obtained at 2000-3000 rpm. Based on the results of this study, we have standardised conductivity measurements of PEDOT/PSS films using the four-point probe by spin-coating at 4000-5000 rpm in order to obtain optimal and reproducible conductivity values.

    Related items

    Showing items related by title, author, creator and subject.

    • PEDOT(PSS) as Solid Contact for Ion-Selective Electrodes: The Influence of the PEDOT(PSS) Film Thickness on the Equilibration Times
      Guzinski, M.; Jarvis, J.; Perez, F.; Pendley, B.; Lindner, E.; De Marco, Roland; Crespo, G.; Acres, R.; Walker, R.; Bishop, J. (2017)
      To understand the rate determining processes during the equilibration of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate-based (PEDOT(PSS)-based) solid contact (SC) ion-selective electrodes (ISEs), the surfaces of ...
    • The development of a rigorous nanocharacterization scheme for electrochemical systems
      Veder, Jean-Pierre M. (2010)
      This thesis reports on a methodology for the nanocharacterization of complex electrochemical systems. A series of powerful techniques have been adapted and applied to studies of two scientifically important electrochemical ...
    • Water uptake in the hydrophilic poly(3,4-ethylenedioxythiophene):poly-(styrene sulfonate) solid-contact of all-solid-state polymeric ion-selective electrodes
      Veder, Jean-pierre; De Marco, Roland; Clarke, Graeme; Jiang, San Ping; Prince, K.; Pretsch, E.; Bakker, Eric (2011)
      Solid-contact (SC) ion-selective electrodes (ISEs) utilizing thin films of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and plasticized poly(vinylchloride) (PVC) have been produced using a spin ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.