Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Utilizing an alternative composite material for effective copper(II) ion capturing from wastewater

    Access Status
    Fulltext not available
    Authors
    Kubra, K.T.
    Salman, M.S.
    Hasan, M.N.
    Islam, A.
    Hasan, M.M.
    Awual, Rabiul
    Date
    2021
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Kubra, K.T. and Salman, M.S. and Hasan, M.N. and Islam, A. and Hasan, M.M. and Awual, M.R. 2021. Utilizing an alternative composite material for effective copper(II) ion capturing from wastewater. Journal of Molecular Liquids. 336: Article No. 116325.
    Source Title
    Journal of Molecular Liquids
    DOI
    10.1016/j.molliq.2021.116325
    ISSN
    0167-7322
    Faculty
    Faculty of Science and Engineering
    School
    WASM: Minerals, Energy and Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/88596
    Collection
    • Curtin Research Publications
    Abstract

    The novel ligand based functionalized composite materials (CpMA) was fabricated using a highly porous silica and deployed as an effective materials for the effective monitoring and adsorption of copper (Cu(II)) ions from contaminated water. The application of CpMA was significantly intensified the monitoring and adsorption of Cu(II) ion at optimum experimental protocol. The organic ligand onto the mesoporous silica was the key factor for an efficient monitoring and adsorption of Cu(II) ion with optimum color formation. The effects of diverse experimental parameters such as solution pH, contact time, initial concentration, selectivity and sensitivity were measured systematically. The solution pH was played the key role for monitoring and adsorption and the present CpMA was worked well in acidic pH region at 3.50. The data clarified that the CpMA was able to detected with significant color formation even in the presence of ultra–trace Cu(II) ions, which was unique feature of the CpMA. The CpMA was offered simple, one–step monitoring procedure without the need of highly sophisticated apparatus. The low limit of detection was 0.36 µg/L based on the calibration curve. The CpMA was exhibited significant ion–selectivity toward the Cu(II) ion in the multi-mixture solution as environmental samples. The data revealed that the CpMA was selectively captured Cu(II) ions from binary and multi mixtures even in the presence of various competing ions. The adsorption isotherm was well described and the maximum adsorption capacity was as high as 189.35 mg/g. The elution of Cu(II) ions from the saturated CpMA was desorbed successfully with 0.30 M HCl. The regenerated material that remained maintained the high selectivity to Cu(II) ions and exhibited almost the same functionality as that of the original adsorbent. Therefore, the proposed CpMA offered a cost-effective and considered an alternative for effectively toxic Cu(II) ion capturing in real sample treatment.

    Related items

    Showing items related by title, author, creator and subject.

    • Effect of iron corrosion on the fate of dosed copper to inhibit nitrification in chloraminated water distribution system
      Zhan, Weixi (2011)
      Nitrification has been acknowledged as one of the major barriers towards efficient chloramination in water supply distribution systems. Many water utilities employing monochloramine as the final disinfectant have been ...
    • Functionalized layered double hydroxides composite bio-adsorbent for efficient copper(II) ion encapsulation from wastewater
      Khandaker, S.; Hossain, M.T.; Saha, P.K.; Rayhan, U.; Islam, A.; Choudhury, T.R.; Awual, Rabiul (2021)
      In this study, naturally abundant and inexpensive bamboo was used to make cheaper activated charcoal for efficient encapsulation of toxic copper (Cu(II)) ion from wastewater. The functionalized bamboo charcoal-Layered ...
    • Treatment of oily and dye wastewater with modified barley straw
      Che Ibrahim, Shariff (2010)
      Barley straw, an agricultural byproduct, was identified as a potential adsorbent material for wastewater treatment as it offers various advantages such as abundant availability at no or very low cost, little processing ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.