High temperature transformations of the Au7Cu5Al4 shape-memory alloy
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
The beta-phase of Au7Cu5Al4 undergoes a reversible shape-memory phase transformation, however there has been some uncertainty regarding the crystal structure or structures of the parent phase. Here we show that, under equilibrium conditions, the parent phase possesses the L21 structure between its Ap (about 79 degrees C) and ~630 degrees C, and the B2 primitive cubic structure between ~630 degrees C and its melting point. It melts directly from B2 into the liquid state and hence never achieves the random bcc A2 structure that has been previously mooted. Splat-cast samples of the alloy are martensitic, proving that development of equilibrium order and defect concentration are not pre-requisites for the A->M transformation to occur
Related items
Showing items related by title, author, creator and subject.
-
Paglia, Gianluca (2004)Aluminas have had some form of chemical and industrial use throughout history. For little over a century corundum (α-Al2O3) has been the most widely used and known of the aluminas. The emerging metastable aluminas, including ...
-
Fansuri, Hamzah (2005)Bismuth molybdates have long been known as active catalysts for selective oxidation of olefins. There are several phases of bismuth molybdates but only three of them are known to be active for partial oxidation of propylene ...
-
McMahon, Darryl (2016)The well-known Bloch-Floquet waves (BFW) are not the only manifestation of periodic structure waves (PSW) resulting from the scattering of structure waves (SW) in an infinite, uniform, one dimensional struc-ture of equally ...