Dynamic Hybrid Learning for Improving Facial Expression Classifier Reliability
Access Status
Date
2022Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISBN
Faculty
School
Collection
Abstract
Independent, discrete models like Paul Ekman’s six basic emotions model are widely used in affective state assessment (ASA) and facial expression classification. However, the continuous and dynamic nature of human expressions often needs to be considered for accurately assessing facial expressions of affective states. This paper investigates how mutual information-carrying continuous models can be extracted and used in continuous and dynamic facial expression classification systems for improving the efficacy and reliability of ASA systems. A novel, hybrid learning model that projects continuous data onto a multidimensional hyperplane is proposed. Through cosine similarity-based clustering (unsupervised) and classification (supervised) processes, our hybrid approach allows us to transform seven, discrete facial expression models into twenty-one facial expression models that include micro-expressions. The proposed continuous, dynamic classifier was able to achieve greater than 73% accuracy when experimented with Random Forest, Support Vector Machine (SVM) and Neural Network classification architectures. The presented system was validated using the Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) and the extended Cohn-Kanade (CK+) dataset.
Related items
Showing items related by title, author, creator and subject.
-
Vice, Jordan; Khan, Masood ; Tan, Tele ; Murray, Iain ; Yanushkevich, Svetlana (2023)Models of seven discrete expressions developed using macro-level facial muscle variations would suffice identifying macro-level expressions of affective states. These models won’t discretise continuous and dynamic ...
-
Vice, Jordan; Khan, Masood ; Murray, Iain; Yanushkevich, Svetlana (2022)Internationally, the recent pandemic caused severe social changes forcing people to adopt new practices in their daily lives. One of these changes requires people to wear masks in public spaces to mitigate the spread of ...
-
Khan, Masood Mehmood; Ward, R. D.; Ingleby, M. (2009)Earlier researchers were able to extract the transient facial thermal features from thermal infrared images (TIRIs) to make binary distinctions between the expressions of affective states. However, effective human-computer ...