Show simple item record

dc.contributor.authorHill, A.R.
dc.contributor.authorCubillas, P.
dc.contributor.authorGebbie-Rayet, J.T.
dc.contributor.authorTrueman, M.
dc.contributor.authorde Bruyn, N.
dc.contributor.authorHarthi, Z.A.
dc.contributor.authorPooley, R.J.S.
dc.contributor.authorAttfield, M.P.
dc.contributor.authorBlatov, V.A.
dc.contributor.authorProserpio, D.M.
dc.contributor.authorGale, Julian
dc.contributor.authorAkporiaye, D.
dc.contributor.authorArstad, B.
dc.contributor.authorAnderson, M.W.
dc.date.accessioned2022-07-20T07:03:41Z
dc.date.available2022-07-20T07:03:41Z
dc.date.issued2021
dc.identifier.citationHill, A.R. and Cubillas, P. and Gebbie-Rayet, J.T. and Trueman, M. and de Bruyn, N. and Harthi, Z.A. and Pooley, R.J.S. et al. 2021. CrystalGrower: a generic computer program for Monte Carlo modelling of crystal growth. Chemical Science. 12 (3): pp. 1126-1146.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/88979
dc.identifier.doi10.1039/d0sc05017b
dc.description.abstract

A Monte Carlo crystal growth simulation tool, CrystalGrower, is described which is able to simultaneously model both the crystal habit and nanoscopic surface topography of any crystal structure under conditions of variable supersaturation or at equilibrium. This tool has been developed in order to permit the rapid simulation of crystal surface maps generated by scanning probe microscopies in combination with overall crystal habit. As the simulation is based upon a coarse graining at the nanoscopic level features such as crystal rounding at low supersaturation or undersaturation conditions are also faithfully reproduced.CrystalGrower permits the incorporation of screw dislocations with arbitrary Burgers vectors and also the investigation of internal point defects in crystals. The effect of growth modifiers can be addressed by selective poisoning of specific growth sites. The tool is designed for those interested in understanding and controlling the outcome of crystal growth through a deeper comprehension of the key controlling experimental parameters.

dc.languageEnglish
dc.publisherROYAL SOC CHEMISTRY
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/FL180100087
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectChemistry, Multidisciplinary
dc.subjectChemistry
dc.titleCrystalGrower: a generic computer program for Monte Carlo modelling of crystal growth
dc.typeJournal Article
dcterms.source.volume12
dcterms.source.number3
dcterms.source.startPage1126
dcterms.source.endPage1146
dcterms.source.issn2041-6520
dcterms.source.titleChemical Science
dc.date.updated2022-07-20T07:03:41Z
curtin.departmentSchool of Molecular and Life Sciences (MLS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidGale, Julian [0000-0001-9587-9457]
dcterms.source.eissn2041-6539
curtin.contributor.scopusauthoridGale, Julian [7101993408]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc/3.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc/3.0/