Show simple item record

dc.contributor.authorXiang, L.
dc.contributor.authorYau, K. K. W.
dc.contributor.authorHui, Y. V.
dc.contributor.authorLee, Andy
dc.date.accessioned2017-01-30T11:09:21Z
dc.date.available2017-01-30T11:09:21Z
dc.date.created2009-05-14T02:17:08Z
dc.date.issued2008
dc.identifier.citationXiang, Liming and Yau, Kelvin K.W. and Hui, Yerr Van and Lee, Andy H. 2008. Minimum hellinger distance estimation for k-component poisson mixture with random effects. Biometrics 64 (2): pp. 508-518.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/8902
dc.identifier.doi10.1111/j.1541-0420.2007.00920.x
dc.description.abstract

Summary. The k-component Poisson regression mixture with random effects is an effective model in describing the heterogeneity for clustered count data arising from several latent subpopulations. However, the residual maximum likelihood estimation (REML) of regression coefficients and variance component parameters tend to be unstable and may result in misleading inferences in the presence of outliers or extreme contamination. In the literature, the minimum Hellinger distance (MHD) estimation has been investigated to obtain robust estimation for finite Poisson mixtures. This article aims to develop a robust MHD estimation approach for k-component Poisson mixtures with normally distributed random effects. By applying the Gaussian quadrature technique to approximate the integrals involved in the marginal distribution, the marginal probability function of the k-component Poisson mixture with random effects can be approximated by the summation of a set of finite Poisson mixtures. Simulation study shows that the MHD estimates perform satisfactorily for data without outlying observation(s), and outperform the REML estimates when data are contaminated. Application to a data set of recurrent urinary tract infections (UTI) with random institution effects demonstrates the practical use of the robust MHD estimation method.

dc.publisherBlackwell Publishing Ltd
dc.titleMinimum hellinger distance estimation for k-component Poisson mixture with random effects
dc.typeJournal Article
dcterms.source.volume64
dcterms.source.number2
dcterms.source.startPage508
dcterms.source.endPage518
dcterms.source.issn0006-341X
dcterms.source.titleBiometrics
curtin.note

Copyright © 2008 John Wiley & Sons, Ltd.

curtin.departmentEpidemiology and Biostatistics
curtin.accessStatusFulltext not available
curtin.facultyFaculty of Health Sciences
curtin.facultyNursing and Midwifery
curtin.facultyWestern Australian Centre for Cancer and Palliative Care (WACCP)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record