Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Survival of ancient landforms in a collisional setting as revealed by combined fission track and (U-Th)/He thermochronometry: A case study from Corsica (France)

    190367_66792_Survival_of_Ancient_Landforms_in_a_Collisional_Setting.pdf (923.2Kb)
    Access Status
    Open access
    Authors
    Danisik, Martin
    Kuhlemann, J.
    Dunkl, I.
    Evans, Noreen
    Szekely, B.
    Frisch, W.
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Danisik, Martin and Kuhlemann, Joachim and Dunkl, Istvan and Evans, Noreen J. and Szekely, Balazs and Frisch, W. 2012. Survival of ancient landforms in a collisional setting as revealed by combined fission track and (U-Th)/He thermochronometry: A case study from Corsica (France). Journal of Geology. 120 (2): pp. 155-173.
    Source Title
    Journal of Geology
    DOI
    10.1086/663873
    ISSN
    00221376
    Remarks

    Copyright © 2012 University of Chicago Press. All rights reserved.

    URI
    http://hdl.handle.net/20.500.11937/8932
    Collection
    • Curtin Research Publications
    Abstract

    The age of high-elevation planation surfaces in Corsica is constrained using new apatite (U-Th)/He data, field observations, and published work (zircon fission track, apatite fission track [AFT] data and landform/stratigraphical analysis). Thermal modeling results based on AFT and (U-Th)/He data, and the Eocene sediments uncomformably overlapping the Variscan crystalline basement indicate that present-day elevated planation surfaces in Corsica are the remnants of an erosion surface formed on the basement between ∼120 and ∼60 Ma. During the Alpine collision in the Paleocene-Eocene, the Variscan crystalline basement was buried beneath a westward-thinning wedge of flysch, and the eastern portion was overridden by the Alpine nappes. Resetting of the apatite fission track thermochronometer suggests an overburden thickness of >4 km covering Variscan Corsica. Protected by soft sediment, the planation surface was preserved. In the latest Oligocene to Miocene times, the surface was re-exposed and offset by reactivated faults, with individual basement blocks differentially uplifted in several phases to elevations of, in some cases, >2 km.Currently the planation surface remnants occur at different altitudes and with variable tilt. This Corsican example demonstrates that under favorable conditions, paleolandforms typical of tectonically inactive areas can survive in tectonically active settings such as at collisional plate margins. The results of some samples also reveal some discrepancies in thermal histories modeled from combined AFT and (U-Th)/He data. In some cases, models could not find a cooling path that fit both data sets, while in other instances, the modeled cooling paths suggest isothermal holding at temperature levels just below the apatite partial annealing zone followed by final late Neogene cooling. This result appears to be an artifact of the modeling algorithm as it is in conflict with independent geological constraints. Caution should be used when cross-validating the AFT and (U-Th)/He systems both in the case extremely old terrains and in the case of rocks with a relatively simple, young cooling history.

    Related items

    Showing items related by title, author, creator and subject.

    • Tectonothermal history of the Schwarzwald Ore District (Germany): An apatite triple dating approach
      Danisik, Martin; Pfaff, K.; Evans, Noreen; Manoloukos, C.; Staude, S.; McDonald, B.; Markl, G. (2010)
      Exceptionally large, U-rich apatite from the Schwarzwald ore district (Germany) was triple dated using ID-TIMS U-Pb, fission track (FT) and (U-Th)/He dating methods. The aim of adopting the multi-dating approach on a ...
    • Low-temperature thermal evolution of the Azov Massif (Ukrainian Shield - Ukraine) - Implications for interpreting (U-Th)/He and fission track ages from cratons
      Danisik, Martin; Sachsenhofer, R.; Privalov, V.; Panova, E.; Frisch, W.; Spiegel, C. (2008)
      The low-temperature thermal evolution of the Azov Massif (eastern part of the Ukrainian Shield, Ukraine) is investigated by combined zircon fission track (ZFT), apatite fission track (AFT) and apatite (U–Th)/He (AHe) ...
    • Meso-Cenozoic tectonic evolution of the Talas-Fergana region of the Kyrgyz Tien Shan revealed by low-temperature basement and detrital thermochronology
      Nachtergaele, S.; De Pelsmaeker, E.; Glorie, S.; Zhimulev, F.; Jolivet, M.; Danišík, Martin; Buslov, M.; De Grave, J. (2017)
      This study provides new low-temperature thermochronometric data, mainly apatite fission track data on the basement rocks in and adjacent to the Talas-Fergana Fault, in the Kyrgyz Tien Shan in the first place. In the second ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.