Comparative sub-cellular proteome analyses reveals metabolic differentiation and production of effector-like molecules in the dieback phytopathogen Phytophthora cinnamomi.
Citation
Source Title
Faculty
School
Collection
Abstract
Phytopathogenic oomycetes pose a significant threat to global biodiversity and food security. The proteomes of these oomycetes likely contain important factors that contribute to their pathogenic success, making their discovery crucial for elucidating pathogenicity. Phytophthora cinnamomi is a root pathogen that causes dieback in a wide variety of crops and native vegetation world-wide. Virulence proteins produced by P. cinnamomi are not well defined and a large-scale approach to understand the biochemistry of this pathogen has not been documented. Soluble mycelial, zoospore and secreted proteomes were obtained and label-free quantitative proteomics was used to compare the composition of the three sub-proteomes. A total of 4635 proteins were identified, validating 17.7% of the predicted gene set. The mycelia were abundant in transporters for nutrient acquisition, metabolism and cellular proliferation. The zoospores had less metabolic related ontologies but were abundant in energy generating, motility and signalling associated proteins. Virulence-associated proteins were identified in the secretome such as candidate effector and effector-like proteins, which interfere with the host immune system. These include hydrolases, cell wall degrading enzymes, putative necrosis-inducing proteins and elicitins. The secretome elicited a hypersensitive response on the roots of a model host and thus suggests evidence of effector activity.
Related items
Showing items related by title, author, creator and subject.
-
Vincent, D.; Du Fall, L.; Livk, A.; Mathesius, U.; Lipscombe, R.; Oliver, Richard; Friesen, T.; Solomon, P. (2011)In this study, proteomics and metabolomics were used to study the wheat response to exposure to the SnToxA effector protein secreted by the fungal pathogen Stagonospora nodorum during infection. Ninety-one different acidic ...
-
Sperscneider, J.; Gardiner, D.; Taylor, J.; Hane, James; Singh, K.; Manners, J. (2013)Background: Fungal pathogens cause devastating losses in economically important cereal crops by utilisingpathogen proteins to infect host plants. Secreted pathogen proteins are referred to as effectors and have thus farbeen ...
-
Thatcher, L.; Williams, A.; Garg, G.; Buck, S.; Singh, Karam (2016)Background: Pathogenic members of the Fusarium oxysporum species complex are responsible for vascular wilt disease on many important crops including legumes, where they can be one of the most destructive disease causing ...