Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Weakening the lower crust: conditions, reactions and deformation

    Access Status
    Fulltext not available
    Authors
    Tacchetto, Tommaso
    Clark, Chris
    Erickson, Timmons
    Reddy, Steven
    Bhowany, K.
    Hand, M.
    Date
    2022
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Tacchetto, T. and Clark, C. and Erickson, T. and Reddy, S.M. and Bhowany, K. and Hand, M. 2022. Weakening the lower crust: conditions, reactions and deformation. Lithos. 422-423: 106738.
    Source Title
    Lithos
    DOI
    10.1016/j.lithos.2022.106738
    ISSN
    0024-4937
    Faculty
    Faculty of Science and Engineering
    School
    School of Earth and Planetary Sciences (EPS)
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP160104637
    URI
    http://hdl.handle.net/20.500.11937/89404
    Collection
    • Curtin Research Publications
    Abstract

    The impact of fluid infiltration on the deformation mechanisms that facilitate the development of lower-crustal ductile shear zones is evaluated through a multiscale structural, geochemical, and thermobaric analysis undertaken across a shear zone/wall-rock interface exposed on the island of Radøy in the Bergen Arcs (western Norway). At the outcrop scale, the shear zone is characterized by a strain gradient reflected in the progressive evolution from weakly-deformed coronitic gabbroic anorthosite to finer-grained foliated amphibolite characterized by a distinct mineral lineation, shear bands, and σ-type porphyroblasts. Electron backscattered diffraction (EBSD) crystallographic orientation data from the coronitic gabbroic anorthosite define an initial stage of shear localization whereby most of the deformation is accommodated by crystal plasticity within plagioclase accompanied by grain size reduction through subgrain rotation recrystallization. As deformation proceeds, complementary to increasing fluid-rock interaction, the replacement of the anhydrous mineral assemblage results in strain partitioning and the development of a heterogeneous ductile shear zone. At the grain scale, the distinct CPO of amphibole, epidote and kyanite suggests deformation being dominated by crystal plastic mechanisms. U-Pb age data obtained from zircon grains within the Caledonian shear zone cluster at 883 ± 3 Ma consistent with ages derived from the granulite facies assemblage. Phase equilibria modelling indicates conditions of deformation within the shear zone at ~600 °C and ~11 kbar, consistent with mid-crustal levels at amphibolite facies conditions. Conversely, geochemical data from garnet of the shear zone characterized by the absence of Eu anomaly, point to mineralogical reactions having initially occurred at higher pressure conditions. This study highlights the key role of fluid infiltration and metamorphic reactions on strain localization processes which can facilitate the ductile deformation of the original assemblage and ultimately contribute to the rheological weakening of an anhydrous and refractory lower crust.

    Related items

    Showing items related by title, author, creator and subject.

    • Anatomy of an extensional shear zone in the mantle Lanzo massif, Italy
      Kaczmarek, M.; Tommasi, Andréa (2011)
      Analysis of the microstructures in the km-scale mantle shear zone that separates the northern and the central parts of the Lanzo peridotite massif provides evidence of an evolution in time and space of deformation processes ...
    • Structural geology and gold mineralisation of the Ora Banda and Zuleika districts, Eastern Goldfields, Western Australia.
      Tripp, Gerard I. (2000)
      Late-Archaean deformation at Ora Banda 69km northwest of Kalgoorlie, Western Australia, resulted in upright folds (D2), ductile shear zones (D3), and a regional-scale brittle-ductile fault network (D4). Early low-angle ...
    • Evolution of zircon deformation mechanisms in a shear zone (Lanzo massif, Western-Alps)
      Kaczmarek, Mary-Alix; Reddy, Steven; Timms, Nicholas Eric (2011)
      Magmatic zircons within two sheared gabbroic dykes from the peridotitic massif of Lanzo (Western-Alps, Italy) revealed evolution of deformation from crystal plasticity to rigid body rotation during shear zone evolution. ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.