Minimizing control volatility for nonlinear systems with smooth piecewise-quadratic input signals
Citation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
We consider a class of nonlinear optimal control problems in which the aim is to minimize control variation subject to an upper bound on the system cost. This idea of sacrificing some cost in exchange for less control volatility—thereby making the control signal easier and safer to implement—is explored in only a handful of papers in the literature, and then mainly for piecewise-constant (discontinuous) controls. Here we consider the case of smooth continuously differentiable controls, which are more suitable in some applications, including robotics and motion control. In general, the control signal's total variation—the objective to be minimized in the optimal control problem—cannot be expressed in closed form. Thus, we introduce a smooth piecewise-quadratic discretization scheme and derive an analytical expression, which turns out to be rational and non-smooth, for computing the total variation of the approximate piecewise-quadratic control. This leads to a non-smooth dynamic optimization problem in which the decision variables are the knot points and shape parameters for the approximate control. We then prove that this non-smooth problem can be transformed into an equivalent smooth problem, which is readily solvable using gradient-based numerical optimization techniques. The paper includes a numerical example to verify the proposed approach.
Related items
Showing items related by title, author, creator and subject.
-
Chai, Qinqin (2013)In this thesis, we develop new computational methods for three classes of dynamic optimization problems: (i) A parameter identification problem for a general nonlinear time-delay system; (ii) an optimal control problem ...
-
Loxton, Ryan Christopher (2010)In this thesis, we develop numerical methods for solving five nonstandard optimal control problems. The main idea of each method is to reformulate the optimal control problem as, or approximate it by, a nonlinear programming ...
-
Zhong, W.; Lin, Qun ; Loxton, Ryan ; Lay Teo, Kok (2021)This paper considers an optimal train control problem with two challenging, non-standard constraints: a speed constraint that is piecewise-constant with respect to the train's position, and control constraints that are ...