Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Effect of fluid-shale interactions on shales micromechanics: Nanoindentation experiments and interpretation from geochemical perspective

    Access Status
    Fulltext not available
    Authors
    Zeng, Lingping
    Akhondzadeh, H.
    Iqbal, Muhammad Atif
    Keshavarz, A.
    Rezaee, Reza
    Xie, Sam
    Date
    2022
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zeng, L. and Akhondzadeh, H. and Iqbal, M.A. and Keshavarz, A. and Rezaee, R. and Xie, Q. 2022. Effect of fluid-shale interactions on shales micromechanics: Nanoindentation experiments and interpretation from geochemical perspective. Journal of Natural Gas Science and Engineering. 101: ARTN 104545.
    Source Title
    Journal of Natural Gas Science and Engineering
    DOI
    10.1016/j.jngse.2022.104545
    ISSN
    1875-5100
    Faculty
    Faculty of Science and Engineering
    School
    WASM: Minerals, Energy and Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/89528
    Collection
    • Curtin Research Publications
    Abstract

    Multi-stage hydraulic fracturing combined with horizontal drilling has been widely implemented to enhance oil/gas production from shale reservoirs. One method of reservoir stimulation is to use low-salinity fracturing fluid that mixes with existing high-salinity formation brine. This process either activates existing natural fractures or generates new fractures thus enhances reservoir communication. However, it is still unclear how the in-situ geochemistry change would affect shale surface energy and fracture/micro-fracture propagation, and far less research has investigated the effect of salinity on shale micromechanics. This impedes the proper evaluation of hydraulic fracturing influence on the stability of shale reservoirs with different mineralogy. In this study, the strength of shale samples with different composition at different saturation conditions were measured using nano-indentation techniques together with atomic force microscopy (AFM) and scanning electron microscopy (SEM). In addition, geochemical modelling with the combination of surface complexation and disjoining pressure isotherm were performed to examine the role of physicochemical reactions on shale micromechanical properties. Nano-indentation tests confirm that brine saturation can decrease samples’ indentation moduli regardless of mineralogy. We also found that decreasing salinity would further decrease indentation modulus of calcite-, quartz- and illite-rich shale samples by 43.8%, 19.2%, and 33.3%, suggesting that rock micromechanics are indeed affected by the geochemistry. Compared to dry condition, calcite- and quartz-rich shales have greater indentation moduli reduction after low salinity brine saturation (64.3% and 45.4%) than the illite-rich sample (32.2%), indicating that fluid-rock interactions associated with shale micromechanics are also influenced by mineralogy. Thermodynamics calculation shows that the shift of the disjoining pressure isotherm from strongly negative to positive likely plays an important role in shale weakening rather the mineral dissolution before and after water saturation. Taken together, these findings provide a new understanding of surface energy induced micromechanics of shale through geochemical modelling together with thermodynamics.

    Related items

    Showing items related by title, author, creator and subject.

    • Determination of Archie's cementation exponent for shale reservoirs; an experimental approach
      Zhong, Zhiqi; Rezaee, Reza ; Esteban, L.; Josh, M.; Feng, Runhua (2021)
      Archie's equation has been widely used in well-log interpretations for the fluid saturation calculation from electrical resistivity measurements. Though constrained standard Archie parameters are accepted in sandstone and ...
    • Investigation of pressure and saturation effects on elastic parameters: an integrated approach to improve time-lapse interpretation
      Grochau, Marcos Hexsel (2009)
      Time-lapse seismic is a modern technology for monitoring production-induced changes in and around a hydrocarbon reservoir. Time-lapse (4D) seismic may help locate undrained areas, monitor pore fluid changes and identify ...
    • The Pressure Dependence of the Archie Cementation Exponent for Samples from the Ordovician Goldwyer Shale Formation in Australia
      Zhong, Zhiqi; Esteban, L.; Rezaee, Reza ; Josh, M.; Feng, Runhua (2021)
      Applying the realistic cementation exponent (m) in Archie’s equation is critical for reliable fluid-saturation calculation from well logs in shale formations. In this study, the cementation exponent was determined under ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.