A methodology to predict the gas permeability parameters of tight reservoirs from nitrogen sorption isotherms and mercury porosimetry curves
Citation
Source Title
ISSN
Faculty
School
Collection
Abstract
A methodology is suggested for the explicit computation of the absolute permeability and Knudsen diffusion coefficient of tight rocks (shales) from pore structure properties. The pore space is regarded as a pore-And-Throat network quantified by the statistical moments of bimodal pore and throat size distributions, pore shape factors, and pore accessibility function. With the aid of percolation theory, analytic equations are developed to express the nitrogen (N2) adsorption/desorption isotherms and mercury (Hg) intrusion curve as functions of all pertinent pore structure parameters. A multistep procedure is adopted for the successive estimation of each set of parameters by the inverse modeling of N2 adsorption-desorption isotherms, and Hg intrusion curve. With the aid of critical path analysis of percolation theory, the absolute permeability and Knudsen diffusion coefficient are computed as functions of estimated pore network properties. Application of the methodology to the datasets of several shale samples enables us to evaluate the predictability of the approach.
Related items
Showing items related by title, author, creator and subject.
-
Al Hinai, Adnan Saif Hamed; Rezaee, M. Reza (2015)Assessing shale formations is a major challenge in the oil and gas industry. The complexities are mainly due to the ultra-low permeability, the presence of a high percentage of clay, and the heterogeneity of the formation. ...
-
Al Hinai, Adnan; Rezaee, M. Reza; Esteban, L.; Labani, Mohammad Mahdi (2014)Pore structure of shale samples from Triassic Kockatea and Permian Carynginia formations in the Northern Perth Basin, Western Australia is characterized. Transport properties of a porous media are regulated by the topology ...
-
Liu, K.; Ostadhassan, M.; Zhou, J.; Gentzis, T.; Rezaee, Reza (2017)Understanding the pore structures of unconventional reservoirs such as shale can assist in estimating their elastic transport and storage properties, thus enhancing the hydrocarbon recovery from such massive resources. ...