Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Distribution of adsorbed water in shale: An experimental study on isolated kerogen and bulk shale samples

    Access Status
    Fulltext not available
    Authors
    Zou, J.
    Rezaee, Reza
    Yuan, Y.
    Liu, K.
    Xie, Sam
    You, L.
    Date
    2020
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zou, J. and Rezaee, R. and Yuan, Y. and Liu, K. and Xie, Q. and You, L. 2020. Distribution of adsorbed water in shale: An experimental study on isolated kerogen and bulk shale samples. Journal of Petroleum Science and Engineering. 187: ARTN 106858.
    Source Title
    Journal of Petroleum Science and Engineering
    DOI
    10.1016/j.petrol.2019.106858
    ISSN
    0920-4105
    Faculty
    Faculty of Science and Engineering
    School
    WASM: Minerals, Energy and Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/89554
    Collection
    • Curtin Research Publications
    Abstract

    Bakken shale samples were studied for distribution of adsorbed water using low-pressure nitrogen sorption. By comparing results between dry and wet samples, the distribution of adsorbed water in shale was determined. Two of the isolated kerogen samples show a striking change of pore size distribution (PSD) in large pores (>16 nm), indicating the pronounced distribution of adsorbed water in large pores of organic matter. As for the bulk shale, water can adsorb in both small (<16 nm) and large pores (>16 nm) depending on hydrophilic sites. However, hydrophilic sites in small pores are mainly contributed by inorganic matter, while hydrophilic sites in large pores are composed of inorganic or organic matter. The overall results therefore clarify the contribution of inorganic and organic matter to water adsorption in shale and provide a better understanding of the significance of adsorbed water in shale.

    Related items

    Showing items related by title, author, creator and subject.

    • Effect of adsorbed moisture on the pore size distribution of marine-continental transitional shales: Insights from lithofacies differences and clay swelling
      Li, Pei; Zhang, J.; Rezaee, Reza ; Dang, W.; Tang, X.; Nie, H.; Chen, S. (2021)
      The variation in pore water distribution within gas shale reservoirs has a significant effect on gas content, and thus on resource evaluation. However, the characteristics of water micro-distribution and its effects on ...
    • Size exclusion chromatography as a tool for natural organic matter characterisation in drinking water treatment
      Allpike, Bradley (2008)
      Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
    • Compositional controls on nanopore structure in different shale lithofacies: A comparison with pure clays and isolated kerogens
      Yuan, Yujie; Rezaee, Reza ; Yu, Hongyan; Zou, J.; Liu, K.; Zhang, Y. (2021)
      Nanopore structure development in shale is intimated with lithofacies that demonstrates a large variety in different formations. It is critical to differentiate and quantify the separate impact of lithological components ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.