Methods for handling missing data in serially sampled sputum specimens for mycobacterial culture conversion calculation
Access Status
Authors
Date
2022Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Collection
Abstract
Background: The occurrence and timing of mycobacterial culture conversion is used as a proxy for tuberculosis treatment response. When researchers serially sample sputum during tuberculosis studies, contamination or missed visits leads to missing data points. Traditionally, this is managed by ignoring missing data or simple carry-forward techniques. Statistically advanced multiple imputation methods potentially decrease bias and retain sample size and statistical power. Methods: We analyzed data from 261 participants who provided weekly sputa for the first 12 weeks of tuberculosis treatment. We compared methods for handling missing data points in a longitudinal study with a time-to-event outcome. Our primary outcome was time to culture conversion, defined as two consecutive weeks with no Mycobacterium tuberculosis growth. Methods used to address missing data included: 1) available case analysis, 2) last observation carried forward, and 3) multiple imputation by fully conditional specification. For each method, we calculated the proportion culture converted and used survival analysis to estimate Kaplan-Meier curves, hazard ratios, and restricted mean survival times. We compared methods based on point estimates, confidence intervals, and conclusions to specific research questions. Results: The three missing data methods lead to differences in the number of participants achieving conversion; 78 (32.8%) participants converted with available case analysis, 154 (64.7%) converted with last observation carried forward, and 184 (77.1%) converted with multiple imputation. Multiple imputation resulted in smaller point estimates than simple approaches with narrower confidence intervals. The adjusted hazard ratio for smear negative participants was 3.4 (95% CI 2.3, 5.1) using multiple imputation compared to 5.2 (95% CI 3.1, 8.7) using last observation carried forward and 5.0 (95% CI 2.4, 10.6) using available case analysis. Conclusion: We showed that accounting for missing sputum data through multiple imputation, a statistically valid approach under certain conditions, can lead to different conclusions than naïve methods. Careful consideration for how to handle missing data must be taken and be pre-specified prior to analysis. We used data from a TB study to demonstrate these concepts, however, the methods we described are broadly applicable to longitudinal missing data. We provide valuable statistical guidance and code for researchers to appropriately handle missing data in longitudinal studies.
Related items
Showing items related by title, author, creator and subject.
-
Myers-Franchi, Bronwyn ; Bouton, T.C.; Ragan, E.J.; White, L.F.; McIlleron, H.; Theron, D.; Parry, C.D.H.; Horsburgh, C.R.; Warren, R.M.; Jacobson, K.R. (2018)Background: An estimated 10% of tuberculosis (TB) deaths are attributable to problematic alcohol use globally, however the causal pathways through which problem alcohol use has an impact on TB treatment outcome is not ...
-
Nie, Katherine Su (2007)Numerous popular business publications and academic literature have highlighted that the Chinese cultural phenomenon of guanxi has made noticeable impacts on the economic efficiency in China’s economic transition. Despite ...
-
Fairnie, Helen Margaret (2005)Scant attention has been given to occupational health hazards of Australian veterinarians. This study aimed to identify the major risk factors for occupational injury and disease, emotional health and suicide rates of ...