Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Monazite as a monitor for melt-rock interaction during cooling and exhumation

    Access Status
    Fulltext not available
    Authors
    Prent, Alexander M.
    Beinlich, Andreas
    Morrissey, L.J.
    Raimondo, T.
    Clark, Chris
    Putnis, Andrew
    Date
    2019
    Type
    Journal Article
    Metadata
    Show full item record
    Citation
    Prent, A.M. and Beinlich, A. and Morrissey, L.J. and Raimondo, T. and Clark, C. and Putnis, A. 2019. Monazite as a monitor for melt-rock interaction during cooling and exhumation. Journal of Metamorphic Geology. 37 (3): pp. 415-438.
    Source Title
    Journal of Metamorphic Geology
    DOI
    10.1111/jmg.12471
    Additional URLs
    https://unisa.alma.exlibrisgroup.com/view/delivery/61USOUTHAUS_INST/12174973280001831
    ISSN
    0263-4929
    Faculty
    Faculty of Science and Engineering
    School
    School of Earth and Planetary Sciences (EPS)
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP160103449
    http://purl.org/au-research/grants/arc/LE150100013
    Collection
    • Curtin Research Publications
    Abstract

    Granulite facies cordierite–garnet–biotite gneisses from the southeastern Reynolds Range, central Australia, contain both orthopyroxene-bearing and orthopyroxene-free quartzofeldspathic leucosomes. Mineral reaction microstructures at the interface of gneiss and leucosome observed in outcrop and petrographically, reflect melt-rock interaction during crystallization. Accessory monazite, susceptible to fluid alteration, dissolution and recrystallization at high temperature, is tested for its applicability to constrain the chemical and P–T–time evolution of melt-rock reactions during crystallization upon cooling. Bulk rock geochemistry and phase equilibria modelling constrain peak pressure and temperature conditions to 6.5–7.5 kbar and ~850°C, and U–Pb geochronology constrains the timing of monazite crystallization to 1.55 Ga, coeval with the Chewings Orogeny. Modelling predicts the presence of up to 15 vol.% melt at peak metamorphic conditions. Upon cooling below 800°C, melt extraction and in situ crystallization of melt decrease the melt volume to less than 7%, at which time it becomes entrapped and melt pockets induce replacement reactions in the adjacent host rock. Replacement reactions of garnet, orthopyroxene and K-feldspar liberate Y, REE, Eu and U in addition to Mg, Fe, Al, Si and K. We demonstrate that distinguishing between monazite varieties solely on the basis of U–Pb ages cannot solve the chronological order of events in this study, nor does it tie monazite to the evolution of melt or stability of rock-forming minerals. Rather, we argue that analyses of various internal monazite textures, their composition and overprinting relations allow us to identify the chronology of events following the metamorphic peak. We infer that retrograde reactions involving garnet, orthopyroxene and K-feldspar can be attributed to melt-rock interaction subsequent to partial melting, which is reflected in the development of compositionally distinct monazite textural domains. Internal monazite textures and their composition are consistent with dissolution and precipitation reactions induced by a high-T melt. Monazite rims enriched in Y, HREE, Eu and U indicate an increased availability of these elements, consistent with the breakdown of orthopyroxene, garnet and K-feldspar observed petrographically. Our study indicates that compositional and textural analysis of monazite in relation to major rock-forming minerals can be used to infer the post-peak chemical evolution of partial melts during high- to ultrahigh-temperature metamorphism.

    Related items

    Showing items related by title, author, creator and subject.

    • Constraints on the timing and conditions of high-grade metamorphism, charnockite formation and fluid-rock interaction in the Trivandrum Block, southern India
      Blereau, E.; Clark, Christopher; Taylor, Richard; Johnson, Tim; Fitzsimons, Ian; Santosh, M. (2016)
      Incipient charnockites have been widely used as evidence for the infiltration of CO2-rich fluids driving dehydration of the lower crust. Rocks exposed at Kakkod quarry in the Trivandrum Block of southern India allow for ...
    • Zoned Monazite and Zircon as Monitors for the Thermal History of Granulite Terranes: an Example from the Central Indian Tectonic Zone
      Bhowmik, S.; Wilde, Simon; Bhandari, A.; Sarbadhikari, A.B. (2014)
      The growth and dissolution behaviour of detrital, metamorphic and magmatic monazite and zircon during granulite-facies anatexis in pelitic and psammo-pelitic granulites and in garnetiferous granite from the southern margin ...
    • Testing the fidelity of thermometers at ultrahigh temperatures
      Clark, Chris ; Taylor, Richard ; Johnson, Tim ; Harley, S.L.; Fitzsimons, Ian ; Oliver, Liam (2019)
      A highly residual granulite facies rock (sample RG07-21) from Lunnyj Island in the Rauer Group, East Antarctica, presents an opportunity to compare different approaches to constraining peak temperature in high-grade ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.