Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Plasma blasting of rocks and rocks-like materials: An analytical model

    Access Status
    Fulltext not available
    Authors
    Kuznetsova, N.
    Zhgun, D.
    Golovanevskiy, Vladimir
    Date
    2022
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Kuznetsova, N. and Zhgun, D. and Golovanevskiy, V. 2022. Plasma blasting of rocks and rocks-like materials: An analytical model. International Journal of Rock Mechanics and Mining Sciences. 150: ARTN 104986.
    Source Title
    International Journal of Rock Mechanics and Mining Sciences
    DOI
    10.1016/j.ijrmms.2021.104986
    ISSN
    1365-1609
    Faculty
    Faculty of Science and Engineering
    School
    WASM: Minerals, Energy and Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/90054
    Collection
    • Curtin Research Publications
    Abstract

    Plasma blasting technology (PBT) is a potential alternative to chemical blasting and mechanical cutting methods for fragmentation of natural rocks, concrete, geopolymers, and other rocks-like materials. We present an analytical model of PBT addressing currently inadequate understanding of the dynamics of shock waves generation and propagation versus the electric energy release conditions. The proposed model describes the operation of the electrical discharge circuit, plasma channel initiation and expansion, and the generation and propagation of shock and pressure waves in the destructible solid. The dynamics of the power generator energy conversion into the plasma channel and into the wave of mechanical stresses in the solid are considered and the main factors determining the efficiency of the method, namely the pulse generator circuit parameters, exploding wire length, and shock wave-transmitting media, are evaluated. Solid fracture efficiency is shown to depend on the pressure pulse wave shape which, in turn, is determined by the rate of electrical energy deposition into the plasma channel. Increasing the exploding wire length leads to an earlier formation of the tensile tangential stresses and to their higher magnitude and thus facilitates material's fragmentation. The use of acoustically stiff media for shock wave transfer marginally improves material's fracture efficiency. Preliminary verification of the functionality of the model was carried out using commercial concretes, with good agreement between the analytically derived and experimentally obtained values. The results demonstrate that the proposed model allows to simulate PBT fracture over a wide range of instrumental and process conditions and can therefore be used for PBT process design, thus realising environmental and economic benefits through significant savings in time and experimental confirmation costs.

    Related items

    Showing items related by title, author, creator and subject.

    • Near-field blast vibration monitoring and analysis for prediction of blast damage in sublevel open stoping
      Fleetwood, Kelly Gene (2010)
      The work presented in this thesis investigates near-field blast vibration monitoring, analysis, interpretation and blast damage prediction in sublevel open stoping geometries. As part of the investigation, seven stopes ...
    • Effects of fractures on seismic waves in poroelastic formations
      Brajanovski, Miroslav (2004)
      Naturally fractured reservoirs have attracted an increased interest of exploration and production geophysics in recent years. In many instances, natural fractures control the permeability of the reservoir, and hence the ...
    • Proceedings of the 9th International Conference on Shock and Impact Loads on Structures
      Zhang, X.; Hao, Hong (2011)
      Blast attacks may cause significant structural and architectural failure. Due to the relatively weaker strength, glass windows are most vulnerable to blast loadings. Flying shards from fractured windows may lead to ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.