Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures

    Access Status
    Open access via publisher
    Authors
    Zulak, Katherine
    Weljie, A.
    Vogel, H.
    Facchini, P.
    Date
    2008
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zulak, K. and Weljie, A. and Vogel, H. and Facchini, P. 2008. Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures. BMC Plant Biology. 8.
    Source Title
    BMC Plant Biology
    DOI
    10.1186/1471-2229-8-5
    School
    Centre for Crop Disease Management
    URI
    http://hdl.handle.net/20.500.11937/9007
    Collection
    • Curtin Research Publications
    Abstract

    Background. Opium poppy (Papaver somniferum) produces a diverse array of bioactive benzylisoquinoline alkaloids and has emerged as a model system to study plant alkaloid metabolism. The plant is cultivated as the only commercial source of the narcotic analgesics morphine and codeine, but also produces many other alkaloids including the antimicrobial agent sanguinarine. Modulations in plant secondary metabolism as a result of environmental perturbations are often associated with the altered regulation of other metabolic pathways. As a key component of our functional genomics platform for opium poppy we have used proton nuclear magnetic resonance (1H NMR) metabolomics to investigate the interplay between primary and secondary metabolism in cultured opium poppy cells treated with a fungal elicitor. Results. Metabolite fingerprinting and compound-specific profiling showed the extensive reprogramming of primary metabolic pathways in association with the induction of alkaloid biosynthesis in response to elicitor treatment. Using Chenomx NMR Suite v. 4.6, a software package capable of identifying and quantifying individual compounds based on their respective signature spectra, the levels of 42 diverse metabolites were monitored over a 100-hour time course in control and elicitor-treated opium poppy cell cultures. Overall, detectable and dynamic changes in the metabolome of elicitor-treated cells, especially in cellular pools of carbohydrates, organic acids and non-protein amino acids were detected within 5 hours after elicitor treatment. The metabolome of control cultures also showed substantial modulations 80 hours after the start of the time course, particularly in the levels of amino acids and phospholipid pathway intermediates. Specific flux modulations were detected throughout primary metabolism, including glycolysis, the tricarboxylic acid cycle, nitrogen assimilation, phospholipid/fatty acid synthesis and the shikimate pathway, all of which generate secondary metabolic precursors. Conclusion. The response of cell cultures to elicitor treatment involves the extensive reprogramming of primary and secondary metabolism, and associated cofactor biosynthetic pathways. A high-resolution map of the extensive reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures is provided.

    Related items

    Showing items related by title, author, creator and subject.

    • Plant defense responses in opium poppy cell cultures revealed by liquid chromatography-tandem mass spectrometry proteomics
      Zulak, Katherine; Khan, M.; Alcantara, J.; Schriemer, D.; Facchini, P. (2009)
      Opium poppy (Papaver somniferum) produces a diverse rarray of bioactive benzylisoquinoline alkaloids, including the narcotic analgesic morphine and the antimicrobial agent sanguinarine. In contrast to the plant, cell ...
    • Disruption of blood-brain barrier function by chronic intake of saturated fat and cholesterol : implications for Alzheimer’s disease risk
      Takechi, Ryusuke (2010)
      It has been reported that lifestyle including diet is associated with Alzheimer’s disease (AD) risk and progression. Population studies indicate that the chronic consumption of diets enriched in saturated fats (SFA) and ...
    • A past and present overview of macrophage metabolism and functional outcomes
      Curi, R.; Mendes, R.; Crispin, L.; Norata, G.; Sampaio, S.; Newsholme, Philip (2017)
      © 2017 The Author(s). In 1986 and 1987, Philip Newsholme et al. reported macrophages utilize glutamine, as well as glucose, at high rates. These authors measured key enzyme activities and consumption and production levels ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.