Sample preparation with sucrose cryoprotection dramatically alters Zn distribution in the rodent hippocampus, as revealed by elemental mapping
dc.contributor.author | Pushie, M.J. | |
dc.contributor.author | Hollings, Ashley | |
dc.contributor.author | Reinhardt, J. | |
dc.contributor.author | Webb, S.M. | |
dc.contributor.author | Lam, Virginie | |
dc.contributor.author | Takechi, Ryu | |
dc.contributor.author | Mamo, John | |
dc.contributor.author | Paterson, P.G. | |
dc.contributor.author | Kelly, M.E. | |
dc.contributor.author | George, G.N. | |
dc.contributor.author | Pickering, I.J. | |
dc.contributor.author | Hackett, Mark | |
dc.date.accessioned | 2023-01-24T04:43:53Z | |
dc.date.available | 2023-01-24T04:43:53Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Pushie, M.J. and Hollings, A. and Reinhardt, J. and Webb, S.M. and Lam, V. and Takechi, R. and Mamo, J.C. et al. 2020. Sample preparation with sucrose cryoprotection dramatically alters Zn distribution in the rodent hippocampus, as revealed by elemental mapping. Journal of Analytical Atomic Spectrometry. 35 (11): pp. 2498-2508. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/90111 | |
dc.identifier.doi | 10.1039/d0ja00323a | |
dc.description.abstract |
Transition metal ions (Fe, Mn, Cu, Zn) are essential for healthy brain function, but altered concentration, distribution, or chemical form of the metal ions has been implicated in numerous brain pathologies. Currently, it is not possible to image the cellular or sub-cellular distribution of metal ions in vivo and therefore, studying brain-metal homeostasis largely relies on ex vivo in situ elemental mapping. Sample preparation methods that accurately preserve the in vivo elemental distribution are essential if one wishes to translate the knowledge of elemental distributions measured ex vivo toward increased understanding of chemical and physiological pathways of brain disease. The choice of sample preparation is particularly important for metal ions that exist in a labile or mobile form, for which the in vivo distribution could be easily distorted by inappropriate sample preparation. One of the most widely studied brain structures, the hippocampus, contains a large pool of labile and mobile Zn. Herein, we describe how sucrose cryoprotection, the gold standard method of preparing tissues for immuno-histochemistry or immuno-fluorescence, which is also often used as a sample preparation method for elemental mapping studies, drastically alters hippocampal Zn distribution. Based on the results of this study, in combination with a comparison against the strong body of published literature that has used either rapid plunge freezing of brain tissue, or sucrose cryo-protection, we strongly urge investigators in the future to cease using sucrose cryoprotection as a method of sample preparation for elemental mapping, especially if Zn is an analyte of interest. | |
dc.language | English | |
dc.publisher | ROYAL SOC CHEMISTRY | |
dc.relation.sponsoredby | http://purl.org/au-research/grants/arc/FT190100017 | |
dc.subject | Science & Technology | |
dc.subject | Physical Sciences | |
dc.subject | Technology | |
dc.subject | Chemistry, Analytical | |
dc.subject | Spectroscopy | |
dc.subject | Chemistry | |
dc.subject | HISTOCHEMICALLY-REACTIVE ZINC | |
dc.subject | SULFIDE SILVER METHOD | |
dc.subject | RAT HIPPOCAMPUS | |
dc.subject | HEAVY-METALS | |
dc.subject | BOUTON ZINC | |
dc.subject | ICP-MS | |
dc.subject | COPPER | |
dc.subject | IRON | |
dc.subject | CU | |
dc.subject | SECTIONS | |
dc.title | Sample preparation with sucrose cryoprotection dramatically alters Zn distribution in the rodent hippocampus, as revealed by elemental mapping | |
dc.type | Journal Article | |
dcterms.source.volume | 35 | |
dcterms.source.number | 11 | |
dcterms.source.startPage | 2498 | |
dcterms.source.endPage | 2508 | |
dcterms.source.issn | 0267-9477 | |
dcterms.source.title | Journal of Analytical Atomic Spectrometry | |
dc.date.updated | 2023-01-24T04:43:53Z | |
curtin.department | Curtin School of Population Health | |
curtin.department | Curtin Health Innovation Research Institute(CHIRI) | |
curtin.department | School of Molecular and Life Sciences (MLS) | |
curtin.accessStatus | Open access | |
curtin.faculty | Faculty of Science and Engineering | |
curtin.contributor.orcid | Takechi, Ryu [0000-0001-6359-3382] | |
curtin.contributor.orcid | Lam, Virginie [0000-0001-8463-645X] | |
curtin.contributor.orcid | Mamo, John [0000-0002-5741-7849] | |
curtin.contributor.orcid | Hackett, Mark [0000-0002-3296-7270] | |
curtin.contributor.orcid | Hollings, Ashley [0000-0001-7829-4932] | |
curtin.contributor.researcherid | Takechi, Ryu [D-3692-2012] [T-9970-2019] | |
dcterms.source.eissn | 1364-5544 | |
curtin.contributor.scopusauthorid | Takechi, Ryu [24173759200] | |
curtin.contributor.scopusauthorid | Lam, Virginie [36096751600] | |
curtin.contributor.scopusauthorid | Mamo, John [7006456735] | |
curtin.contributor.scopusauthorid | Hackett, Mark [35240056500] [57999521300] |