Mafic intrusions in southwestern Australia related to supercontinent assembly or breakup?
Access Status
Authors
Date
2022Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
Variably oriented dolerite intrusions outcrop in the Albany–Fraser Orogen along the south coast of Western Australia with previously unknown ages but where previous studies interpreted Mesoproterozoic to Cretaceous emplacement. Here, we place temporal constraints on seven mafic intrusions across ∼150 km of coast using zircon U–Pb, apatite U–Pb, and plagioclase 40Ar/39Ar geochronology, coupled with whole-rock major and trace-element geochemistry, that reveal late Mesoproterozoic to potentially Early Cretaceous crystallisation ages. Three intrusions metamorphosed to greenschist facies are likely associated with either the emplacement of the ca 1210 Ma Marnda Moorn large igneous province or Stage II Albany–Fraser Orogeny, both of which were associated with the assembly of Rodinia. Three unmetamorphosed dykes have (probable) Neoproterozoic to lower Cambrian emplacement ages, likely associated with the ca 550–500 Ma Kuunga Orogeny during Gondwana assembly. The final sill, also unmetamorphosed, strikes perpendicular to the other six intrusions, shows unusual Pb anomalies and contains inherited zircon that has been reset by a Permian or younger event, pointing towards magmatism in southwestern Australia during the breakup of Gondwana. The new results provide hitherto unrecognised mafic intrusive evidence for modification of Proterozoic crust, potentially associated with Rodinia assembly, Gondwana assembly and Gondwana breakup in southwestern Australia. KEY POINTS Variably oriented mafic dykes in southwest Australia are dated by zircon U–Pb, apatite U–Pb and plagioclase 40Ar/39Ar methods. The dykes are related to Rodinia assembly (ca 1200 Ma), Gondwana assembly (ca 550 Ma) and, probably, Gondwana breakup (ca 135 Ma). These new ages provide evidence for mafic activity clearly linked to the supercontinent cycle.
Related items
Showing items related by title, author, creator and subject.
-
Stark, J. Camilla; Wang, Xuan-Ce; Li, Zheng-Xiang; Rasmussen, Birger; Sheppard, Steve; Zi, Jianwei; Clark, Christopher; Hand, M.; Li, W. (2018)Antarctica contains continental fragments of Australian, Indian and African affinities, and is one of the key elements in the reconstruction of Nuna, Rodinia and Gondwana. The Bunger Hills region in East Antarctica is ...
-
Stark, J. Camilla; Wang, X.; Li, Zheng-Xiang; Denyszyn, S.; Rasmussen, Birger; Zi, Jianwei (2018)The Archean Yilgarn Craton in Western Australia hosts at least five generations of mafic dykes ranging from Archean to Neoproterozoic in age, including the craton-wide ca. 2408 Ma Widgiemooltha and the 1210 Ma Marnda Moorn ...
-
Ge, Rongfeng; Zhu, W.; Zheng, B.; Wu, H.; He, J.; Zhu, X. (2012)Extensive Neoproterozoic magmatism occurred in the Tarim Craton, providing a key to understanding the role of Tarim in the Rodinia and Gondwana supercontinents. We present LA-ICP-MS zircon U-Pb ages, Lu-Hf isotopic data ...