Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    The variation and visualisation of elastic anisotropy in rock-forming minerals

    Access Status
    In process
    Authors
    Healy, D.
    Erik Timms, N.
    Alan Pearce, M.
    Date
    2020
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Healy, D. and Erik Timms, N. and Alan Pearce, M. 2020. The variation and visualisation of elastic anisotropy in rock-forming minerals. Solid Earth. 11 (2): pp. 259-286.
    Source Title
    Solid Earth
    DOI
    10.5194/se-11-259-2020
    ISSN
    1869-9510
    URI
    http://hdl.handle.net/20.500.11937/90164
    Collection
    • Curtin Research Publications
    Abstract

    All minerals behave elastically; elasticity is a rheological property that controls their ability to support stress, strain, and pressure; controls the nature of acoustic wave propagation; and influences subsequent plastic (i.e. permanent non-reversible) deformation. All minerals are intrinsically anisotropic in their elastic properties - that is, they have directional variations that are related to the configuration of the crystal lattice. This means that the commonly used mechanical elastic properties that relate elastic stress to elastic strain, including Young's modulus (E), Poisson's ratio (ν), shear modulus (G) and linear compressibility (β), are dependent on crystallographic direction. In this paper, we explore the ranges of anisotropy of E, ν, G and β in 86 rock-forming minerals, using previously published data, and show that the range is much wider than commonly assumed. We also explore how these variations (the directionality and the magnitude) are important for fundamental processes in the solid earth, including deformation (mechanical) twinning, coherent phase transformations and brittle failure. We present a new open-source software package (AnisoVis, written in MATLAB), which we use to calculate and visualise directional variations in elastic properties of rock-forming minerals. Following previous work in the fields of chemistry and materials science, we demonstrate that by visualising the variations in elasticity, we discover previously unreported properties of rock-forming minerals. For example, we show previously unreported directions of negative Poisson's ratio and negative linear compressibility, and we show that the existence of these features is more widespread (i.e. present in many more minerals) than previously thought. We illustrate the consequences of intrinsic elastic anisotropy for the elastic normal and shear strains within α-quartz single crystal under different applied stress fields; the role of elastic anisotropy on Dauphiné twinning and the α-β phase transformations in quartz; and stress distributions around voids of different shapes in talc, lizardite, albite, and sanidine. In addition to our specific examples, elastic anisotropy in rock-forming minerals, to the degree that we describe, has significant consequences for seismic (acoustic) anisotropy, for the focal mechanisms of earthquakes in anisotropic source regions (e.g. subducting slabs), for a range of brittle and ductile deformation mechanisms in minerals, and for geobarometry using mineral inclusions.

    Related items

    Showing items related by title, author, creator and subject.

    • Theoretical and numerical modelling of the effect of viscous and viscoelastic fluids on elastic properties of saturated rocks
      Makarynska, Dina (2010)
      Rock physics is an essential link connecting seismic data to the properties of rocks and fluids in the subsurface. One of the most fundamental questions of rock physics is how to model the effects of pore fluids on rock ...
    • A rock mechanical model developed for a Coal Seam Well
      Minaeian, V.; Rasouli, Vamegh (2011)
      Drilling operation in order to produce from Coalbed methane (CBM) is prone to various geomechanics related problems not only within the coal seam but also across the overburden layers. Wellbore instability in the form of ...
    • Elastic properties of carbonates : measurements and modelling
      Bastos de Paula, Osni (2011)
      This thesis is a multi-scale study of carbonate rocks, from the nanoscale and digital rock investigations to the imaging studies of carbonate reservoir analogues. The essential links between these extremes are the carbonate ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.