Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Evidence of impact melting and post-impact decomposition of sedimentary target rocks from the Steen River impact structure, Alberta, Canada

    Access Status
    Fulltext not available
    Authors
    Walton, E.L.
    Timms, Nick
    Hauck, T.E.
    MacLagan, E.A.
    Herd, C.D.K.
    Date
    2019
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Walton, E.L. and Timms, N.E. and Hauck, T.E. and MacLagan, E.A. and Herd, C.D.K. 2019. Evidence of impact melting and post-impact decomposition of sedimentary target rocks from the Steen River impact structure, Alberta, Canada. Earth and Planetary Science Letters. 515: pp. 173-186.
    Source Title
    Earth and Planetary Science Letters
    DOI
    10.1016/j.epsl.2019.03.015
    ISSN
    0012-821X
    Faculty
    Faculty of Science and Engineering
    School
    School of Earth and Planetary Sciences (EPS)
    URI
    http://hdl.handle.net/20.500.11937/90170
    Collection
    • Curtin Research Publications
    Abstract

    Hypervelocity bolide impacts deliver vast amounts of energy to the Earth's near surface. This crustal process almost universally includes sedimentary target rocks; however, their response to impact is poorly understood, in part because of complexities due to layering, pore space and the presence of volatiles that are difficult to model. The response of carbonates to bolide impact remains contentious, yet whether they melt or decompose and liberate gases by the reaction CaCO 3(s) → CaO (s) + CO 2(g) ↑, has significant implications for post-impact climatic effects. We report on previously unknown carbonate impact melts at the Steen River impact structure, Canada, and the first description of naturally shocked barite, BaSO 4 . Carbonate melts are preserved as groundmass-supported calcite-rich clasts, sampled from an up to 164 m thick, continuous sequence of crater-fill polymict breccias. Electron microscopy reveals fluidal- and ocellar-textured calcite and barite, intimately associated with silicate melt, consistent with these phases being in the liquid state at the same time. Raman spectroscopy and electron backscatter diffraction (EBSD) mapping confirm the presence of high-pressure phases – reidite and coesite – within some Steen River carbonate melt-bearing breccias. These minerals attest to the strong shock provenance of the breccia and provide constraints on their shock history. Preservation of reidite lamellae in zircon indicates a shock pressure >30 GPa <60 GPa and temperatures <1473 K. In addition to melting, we present compelling evidence for widespread (70–100%) decomposition of carbonate target rocks, mixed as lithic clasts into hot impact breccias. In this context, decomposition occurs strictly post-impact due to thermal equilibration-related heating. We demonstrate that this mechanism for CO 2 outgassing is likely more widespread than previously recognized. The presence of andradite-grossular garnet serve as mineralogical markers of decomposition, analogous to limestone-replacing skarn deposits. Ca-rich garnet may therefore prove an important indicator mineral for post-shock decomposition of carbonate-bearing target rocks at other craters. These findings significantly advance our understanding of how sedimentary rocks respond to hypervelocity impact, and have wide-reaching implications for estimating the amount and timing of climatically-active volatile release due to impact events.

    Related items

    Showing items related by title, author, creator and subject.

    • Geochronological constraints on the age of a Permo–Triassic impact event: U–Pb and 40Ar/39Ar results for the 40 km Araguainha structure of central Brazil
      Tohver, E; Lana, C; Cawood, Peter; Fletcher, Ian; Jourdan, Fred; Sherlock, Sarah; Rasmussen, Birger; Trindade, R; Yokoyama, E; Souza-Filho, C; Marangoni, Y (2012)
      Impact cratering has been a fundamental geological process in Earth history with major ramifications for the biosphere. The complexity of shocked and melted rocks within impact structures presents difficulties for accurate ...
    • A Late Mesoproterozoic 40Ar/39Ar age for a melt breccia from the Keurusselkä impact structure, Finland
      Schmieder, M.; Jourdan, Fred; Moilanen, J.; Buchner, E.; Öhman, T. (2016)
      Field investigations in the eroded central uplift of the =30 km Keurusselkä impact structure, Finland, revealed a thin, dark melt vein that intersects the autochthonous shatter cone-bearing target rocks near the homestead ...
    • Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364
      Christeson, G.; Gulick, S.; Morgan, J.; Gebhardt, C.; Kring, D.; Le Ber, E.; Lofi, J.; Nixon, C.; Poelchau, M.; Rae, A.; Rebolledo-Vieyra, M.; Riller, U.; Schmitt, D.; Wittmann, A.; Bralower, T.; Chenot, E.; Claeys, P.; Cockell, C.; Coolen, Marco; Ferrière, L.; Green, S.; Goto, K.; Jones, H.; Lowery, C.; Mellett, C.; Ocampo-Torres, R.; Perez-Cruz, L.; Pickersgill, A.; Rasmussen, C.; Sato, H.; Smit, J.; Tikoo, S.; Tomioka, N.; Urrutia-Fucugauchi, J.; Whalen, M.; Xiao, L.; Yamaguchi, K. (2018)
      © 2018 Elsevier B.V. Joint International Ocean Discovery Program and International Continental Scientific Drilling Program Expedition 364 drilled into the peak ring of the Chicxulub impact crater. We present P-wave velocity, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.