Show simple item record

dc.contributor.authorRajšić, Andrea
dc.contributor.authorMiljkovic, Katarina
dc.contributor.authorWójcicka, N.
dc.contributor.authorCollins, G.S.
dc.contributor.authorOnodera, K.
dc.contributor.authorKawamura, T.
dc.contributor.authorLognonné, P.
dc.contributor.authorWieczorek, M.A.
dc.contributor.authorDaubar, I.J.
dc.date.accessioned2023-01-28T01:59:14Z
dc.date.available2023-01-28T01:59:14Z
dc.date.issued2021
dc.identifier.citationRajšić, A. and Miljković, K. and Wójcicka, N. and Collins, G.S. and Onodera, K. and Kawamura, T. and Lognonné, P. et al. 2021. Numerical Simulations of the Apollo S-IVB Artificial Impacts on the Moon. Earth and Space Science. 8 (12): ARTN e2021EA001887.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/90181
dc.identifier.doi10.1029/2021EA001887
dc.description.abstract

The third stage of the Saturn IV rocket used in the five Apollo missions made craters on the Moon ∼30 m in diameter. Their initial impact conditions were known, so they can be considered controlled impacts. Here, we used the iSALE-2D shock physics code to numerically simulate the formation of these craters, and to calculate the vertical component of seismic moment (∼4 × 1010 Nm) and seismic efficiency (∼10−6) associated with these impacts. The irregular booster shape likely caused the irregular crater morphology observed. To investigate this, we modeled six projectile geometries, with footprint area between 3 and 105 m2, keeping the mass and velocity of the impactor constant. We showed that the crater depth and diameter decreased as the footprint area increased. The central mound observed in lunar impact sites could be a result of layering of the target and/or low density of the projectile. Understanding seismic signatures from impact events is important for planetary seismology. Calculating seismic parameters and validating them against controlled experiments in a planetary setting will help us understand the seismic data received, not only from the Moon, but also from the InSight Mission on Mars and future seismic missions.

dc.languageEnglish
dc.publisherAMER GEOPHYSICAL UNION
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DE180100584
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP180100661
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectAstronomy & Astrophysics
dc.subjectGeosciences, Multidisciplinary
dc.subjectGeology
dc.subjectimpact cratering
dc.subjectnumerical modeling
dc.subjectseismic moment
dc.subjectseismic efficiency
dc.subjectMoon
dc.subjectartificial impacts
dc.subjectMODEL
dc.titleNumerical Simulations of the Apollo S-IVB Artificial Impacts on the Moon
dc.typeJournal Article
dcterms.source.volume8
dcterms.source.number12
dcterms.source.issn2333-5084
dcterms.source.titleEarth and Space Science
dc.date.updated2023-01-28T01:59:14Z
curtin.accessStatusOpen access
curtin.contributor.orcidRajšić, Andrea [0000-0002-8598-0815]
curtin.contributor.orcidMiljkovic, Katarina [0000-0001-8644-8903]
curtin.contributor.researcheridMiljkovic, Katarina [D-4844-2013]
curtin.identifier.article-numberARTN e2021EA001887
dcterms.source.eissn2333-5084
curtin.contributor.scopusauthoridMiljkovic, Katarina [35219281700]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/