Assessing Reef island sensitivity based on LiDAR-derived morphometric indicators
Citation
Source Title
Faculty
School
Funding and Sponsorship
Collection
Abstract
Reef islands are some of the most highly sensitive landforms to the impacts of future environmental change. Previous assessments of island morphodynamics primarily relied on historical aerial and satellite imagery. These approaches limit analysis to two-dimensional parameters, with no ability to assess long-term changes to island volume or elevation. Here, we use high-resolution airborne LiDAR data to assess three-dimensional reef island features for 22 islands along the north-western coast of Australia. Our primary objective was to utilize two regional LiDAR datasets to identify characteristics indicative of island sensitivity and future vulnerability. Results show reef platform area to be an accurate predictor of island area and volume suggesting larger island volumes may reflect (1) increased carbonate production and supply from the reef platform and/or (2) enhanced shoreline protection by larger reef platforms. Locations of foredune scarping (an erosional signature) and island orientations were aligned to the regional wind and wave climate. Reef island characteristics (island area, volume, elevation, scarping, and platform area) were used to rank islands according to sensitivity, using a new Island Sensitivity Characteristics Index (ISCi) where low ISCi indicates stable islands (large areas and volumes, high elevations, and fewer scarped areas) and high ISCi indicates unstable islands (small areas and volumes, low elevations, and more scarped areas). Comparison of two LiDAR surveys from 2016 and 2018 validates the use of 3D morphometrics as important (direct) measurements of island landform change, and can complement the use of 2D parameters (e.g., area) moving forward. Results demonstrate that ongoing use of airborne LiDAR and other 3D technology for monitoring coral reef islands at regional scales will enable more accurate quantification of their sensitivity to future impacts of global environmental change.
Related items
Showing items related by title, author, creator and subject.
-
Bonesso, J.L.; Cuttler, M.V.W.; Browne, Nicola ; Mather, C.C.; Paumard, V.; Hiscock, W.; Callow, J.N.; O'Leary, M. (2023)Coral reef islands are vulnerable landforms to environmental change. Constructed of largely unconsolidated reef-derived sediments, they are highly sensitive to variations in metocean boundary conditions, raising global ...
-
Hwang, C.; Hsu, H.J.; Featherstone, Will ; Cheng, C.C.; Yang, M.; Huang, W.; Wang, C.Y.; Huang, J.F.; Chen, K.H.; Huang, C.H.; Chen, H.; Su, W.Y. (2020)© 2020, Springer-Verlag GmbH Germany, part of Springer Nature. This paper combines gravity data collected from airborne, shipborne and terrestrial surveys and those derived from satellite altimetry to determine a ...
-
West, K.M.; Stat, Michael ; Harvey, Euan ; Skepper, C.L.; Di Battista, Joey ; Richards, Zoe ; Travers, M.J.; Newman, Stephen ; Bunce, Michael (2020)Environmental DNA (eDNA) metabarcoding, a technique for retrieving multispecies DNA from environmental samples, can detect a diverse array of marine species from filtered seawater samples. There is a growing potential to ...