Show simple item record

dc.contributor.authorJumpen, W.
dc.contributor.authorOrankitjaroen, S.
dc.contributor.authorBoonkrong, P.
dc.contributor.authorWattananon, B.
dc.contributor.authorWiwatanapataphee, Benchawan
dc.date.accessioned2017-01-30T11:10:03Z
dc.date.available2017-01-30T11:10:03Z
dc.date.created2015-10-29T04:09:50Z
dc.date.issued2011
dc.identifier.citationJumpen, W. and Orankitjaroen, S. and Boonkrong, P. and Wattananon, B. and Wiwatanapataphee, B. 2011. SIS-SEIQR adaptive network model for pandemic influenza, pp. 147-151.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/9026
dc.description.abstract

This paper aims to present an SIS-SEIQR network model for pandemic influenza. We propose a network algorithm to generate an adaptive social network with dynamic hub nodes to capture the disease transmission in a human community. Effects of visiting probability on the spread of the disease are investigated. The results indicate that high visiting probability increases the transmission rate of the disease.

dc.titleSIS-SEIQR adaptive network model for pandemic influenza
dc.typeConference Paper
dcterms.source.startPage147
dcterms.source.endPage151
dcterms.source.titleProceedings of the European Computing Conference, ECC '11
dcterms.source.seriesProceedings of the European Computing Conference, ECC '11
dcterms.source.isbn9789604742974
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record