Show simple item record

dc.contributor.authorMitchell, R.N.
dc.contributor.authorZhang, Nan
dc.contributor.authorSalminen, J.
dc.contributor.authorLiu, Yebo
dc.contributor.authorSpencer, Christopher
dc.contributor.authorSteinberger, B.
dc.contributor.authorMurphy, J.B.
dc.contributor.authorLi, Zheng-Xiang
dc.date.accessioned2023-02-21T04:00:37Z
dc.date.available2023-02-21T04:00:37Z
dc.date.issued2021
dc.identifier.citationMitchell, R.N. and Zhang, N. and Salminen, J. and Liu, Y. and Spencer, C.J. and Steinberger, B. and Murphy, J.B. et al. 2021. The supercontinent cycle. Nature Reviews Earth and Environment. 2 (5): pp. 358-374.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/90590
dc.identifier.doi10.1038/s43017-021-00160-0
dc.description.abstract

Supercontinents signify self-organization in plate tectonics. Over the past ~2 billion years, three major supercontinents have been identified, with increasing age: Pangaea, Rodinia and Columbia. In a prototypal form, a cyclic pattern of continental assembly and breakup likely extends back to ~3 billion years ago, albeit on the smaller scale of Archaean supercratons, which, unlike global supercontinents, were tectonically segregated. In this Review, we discuss how the emergence of supercontinents provides a minimum age for the onset of the modern global plate tectonic network, whereas Archaean supercratons might reflect an earlier geodynamic and nascent tectonic regime. The assembly and breakup of Pangaea attests that the supercontinent cycle is intimately linked with whole-mantle convection. The supercontinent cycle is, consequently, interpreted as both an effect and a cause of mantle convection, emphasizing the importance of both top-down and bottom-up geodynamics, and the coupling between them. However, the nature of this coupling and how it has evolved remains controversial, resulting in contrasting models of supercontinent formation, which can be tested by quantitative geodynamic modelling and geochemical proxies. Specifically, which oceans close to create a supercontinent, and how such predictions are linked to mantle convection, are directions for future research.

dc.languageEnglish
dc.publisherSPRINGERNATURE
dc.relation.urihttps://helda.helsinki.fi/handle/10138/335509
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/FL150100133
dc.subjectScience & Technology
dc.subjectLife Sciences & Biomedicine
dc.subjectPhysical Sciences
dc.subjectEnvironmental Sciences
dc.subjectGeosciences, Multidisciplinary
dc.subjectEnvironmental Sciences & Ecology
dc.subjectGeology
dc.subjectTRUE POLAR WANDER
dc.subjectLARGE IGNEOUS PROVINCES
dc.subjectPLATE-TECTONICS
dc.subjectMANTLE CONVECTION
dc.subjectBILLION YEARS
dc.subjectBREAK-UP
dc.subjectMESOPROTEROZOIC SUPERCONTINENT
dc.subjectFUTURE SUPERCONTINENT
dc.subjectATMOSPHERIC OXYGEN
dc.subjectVELOCITY PROVINCES
dc.titleThe supercontinent cycle
dc.typeJournal Article
dcterms.source.volume2
dcterms.source.number5
dcterms.source.startPage358
dcterms.source.endPage374
dcterms.source.titleNature Reviews Earth and Environment
dc.date.updated2023-02-21T04:00:37Z
curtin.departmentSchool of Earth and Planetary Sciences (EPS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidLiu, Yebo [0000-0002-5752-0854]
curtin.contributor.orcidSpencer, Christopher [0000-0003-4264-3701]
curtin.contributor.orcidLi, Zheng-Xiang [0000-0003-4350-5976]
curtin.contributor.researcheridSpencer, Christopher [N-8076-2015]
curtin.contributor.researcheridLi, Zheng-Xiang [B-8827-2008]
dcterms.source.eissn2662-138X
curtin.contributor.scopusauthoridZhang, Nan [21234365000]
curtin.contributor.scopusauthoridSpencer, Christopher [37033040800] [57194577570]
curtin.contributor.scopusauthoridLi, Zheng-Xiang [57192954386] [57198889498] [7409074764]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record