Show simple item record

dc.contributor.authorZhong, Yijun
dc.contributor.authorXu, Xiaomin
dc.contributor.authorVeder, Jean-Pierre
dc.contributor.authorShao, Zongping
dc.date.accessioned2023-03-09T07:55:07Z
dc.date.available2023-03-09T07:55:07Z
dc.date.issued2020
dc.identifier.citationZhong, Y. and Xu, X. and Veder, J.P. and Shao, Z. 2020. Self-Recovery Chemistry and Cobalt-Catalyzed Electrochemical Deposition of Cathode for Boosting Performance of Aqueous Zinc-Ion Batteries. iScience. 23 (3): ARTN 100943.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/90778
dc.identifier.doi10.1016/j.isci.2020.100943
dc.description.abstract

Rechargeable Zn-ion batteries working with manganese oxide cathodes and mild aqueous electrolytes suffer from notorious cathode dissolution during galvanostatic cycling. Herein, for the first time we demonstrate the dynamic self-recovery chemistry of manganese compound during charge/discharge processes, which strongly determines the battery performance. A cobalt-modified δ-MnO2 with a redox-active surface shows superior self-recovery capability as a cathode. The cobalt-containing species in the cathode enable efficient self-recovery by continuously catalyzing the electrochemical deposition of active Mn compound, which is confirmed by characterizations of both practical coin-type batteries and a new-design electrolyzer system. Under optimized condition, a high specific capacity over 500 mAh g−1 is achieved, together with a decent cycling performance with a retention rate of 63% over 5,000 cycles. With this cobalt-facilitated deposition effect, the battery with low concentration (0.02 M) of additive Mn2+ in the electrolyte (only 12 atom % to the overall Mn) maintains decent capacity retention.

dc.languageEnglish
dc.publisherCELL PRESS
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP150104365
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP160104835
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectScience & Technology
dc.subjectMultidisciplinary Sciences
dc.subjectScience & Technology - Other Topics
dc.subjectHIGH-CAPACITY
dc.subjectRECENT PROGRESS
dc.subjectCHALLENGES
dc.subjectSTORAGE
dc.subjectOXIDE
dc.subjectLIFE
dc.titleSelf-Recovery Chemistry and Cobalt-Catalyzed Electrochemical Deposition of Cathode for Boosting Performance of Aqueous Zinc-Ion Batteries
dc.typeJournal Article
dcterms.source.volume23
dcterms.source.number3
dcterms.source.issn2589-0042
dcterms.source.titleiScience
dc.date.updated2023-03-09T07:55:05Z
curtin.departmentWASM: Minerals, Energy and Chemical Engineering
curtin.departmentJohn de Laeter Centre (JdLC)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidShao, Zongping [0000-0002-4538-4218]
curtin.contributor.orcidZhong, Yijun [0000-0003-4112-7115]
curtin.contributor.orcidXu, Xiaomin [0000-0002-0067-3331]
curtin.contributor.researcheridShao, Zongping [B-5250-2013]
curtin.contributor.researcheridZhong, Yijun [H-1647-2013]
curtin.contributor.researcheridXu, Xiaomin [E-5439-2014]
curtin.identifier.article-numberARTN 100943
dcterms.source.eissn2589-0042
curtin.contributor.scopusauthoridShao, Zongping [55904502000] [57200900274]
curtin.contributor.scopusauthoridVeder, Jean-Pierre [23092202000]
curtin.contributor.scopusauthoridXu, Xiaomin [57060970200]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/